
Research Article
Lagrangian Relaxation for an Inventory Location Problem with
Periodic Inventory Control and Stochastic Capacity Constraints

Claudio Araya-Sassi ,1,2 Pablo A. Miranda ,1 and Germán Paredes-Belmar 3

1School of Industrial Engineering, Pontificia Universidad Católica de Valparaı́so, Valparaı́so 2362807, Chile
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We studied a joint inventory location problem assuming a periodic review for inventory control. A single plant supplies a set of
products tomultiple warehouses and they serve a set of customers or retailers.The problem consists in determining which potential
warehouses should be opened and which retailers should be served by the selected warehouses as well as their reorder points and
order sizes while minimizing the total costs. The problem is a Mixed Integer Nonlinear Programming (MINLP) model, which
is nonconvex in terms of stochastic capacity constraints and the objective function. We propose a solution approach based on
a Lagrangian relaxation and the subgradient method. The decomposition approach considers the relaxation of different sets of
constraints, including customer assignment, warehouse demand, and variance constraints. In addition, we develop a Lagrangian
heuristic to determine a feasible solution at each iteration of the subgradientmethod.Theproposed Lagrangian relaxation algorithm
provides low duality gaps and near-optimal solutions with competitive computational times. It also shows significant impacts of
the selected inventory control policy into total system costs and network configuration, when it is compared with different review
period values.

1. Introduction

Aggressive competition and strong economic turbulence
in today’s global markets drive companies to improve the
performance of their supply chains in order to achieve a sus-
tainable competitive advantage. The performance of a supply
chain depends strongly on its design. Hence the managers’
focus is there. In this context, supply chain network design
(SCND) is a widely studied problem, which currently plays
an important role in supply chain management and logistics
[1, 2]. SCND consists of locating plants, warehouses, and
distribution centers, allocating customers to open facilities
while minimizing system-wide costs and satisfying service
level requirements. Historically, the SCND problem has been
tackled through a sequential approach that omits related
tactical and operational decisions (e.g., inventory control,
fleet design, and warehouse design). In this way, the omitted
decisions are addressed after SCND has been solved. This

means that strategic decisions, like the facility location, are
made without regard to tactical decisions such as inventory
control policy. This implies obtaining suboptimal SCND
configurations because tactical decisions are subordinates to
this network design [3].

This paper is focused on a three-level supply chain, where
a single plant serves a set of warehouses, as Figure 1 shows.
This set of warehouses serves a set of end retailers in a
single commodity scenario. Unlike major previous inventory
location models that assume a continuous review policy for
warehouse inventory control, we use a periodic review policy(𝑅, 𝑠, 𝑆) for each warehouse, where 𝑅 is the period review, 𝑠 is
the reorder point, and 𝑆 is the inventory objective level.

Thus, we study an inventory location model, in which
stochastic inventory capacity constraints, expected inventory,
and ordering costs are defined using a periodic review
strategy. We formulate this inventory location model with
periodic review control using an analysis of the expected
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Figure 1: Representation of a distribution network of three stages.

safety stock, cyclic inventory and order quantities, and peak
inventory levels for each potential warehouse. This MINLP
model isNP-hard because it is an extension of theCapacitated
Facility Location Problem (CFLP), which is already NP-hard.

Considering the high complexity of the analyzed prob-
lem, we propose an approximate solution approach based
on Lagrangian relaxation and the subgradient method. The
decomposition approach considers the relaxation of a differ-
ent combination of problem constraints, including customer
assignment, warehouse demand, and variance constraints.
Then, we decompose the relaxed problem in a subproblem
for each warehouse, which in turn is disaggregated in an
inventory and location subproblem. In addition, a Lagrangian
heuristic is developed to achieve a feasible solution at each
iteration of the subgradient method. This Lagrangian heuris-
tic is made up of warehouse selection and retailers greedy
assignment, followed by local search improvements. We solve
instances up to 20 potential warehouses and 40 retailers. The
Lagrangian relaxation algorithm proposed in this paper pro-
vides low duality gaps and near-optimal solutions with com-
petitive computational times. These results imply that this
solution approach may be used in larger problem instances
andmore complex inventory location problems (ILP) asmul-
ticommodity and multiperiod formulations. In addition, the
inclusion of periodic review policy in this model is relevant
for those companies in which a continuous review policy is
not feasible or there is a need to reduce costs for the inventory
control system, especially for items in high demand. Consid-
ering all these attributes, ILP models could represent more
accurately the complexity faced by distribution companies
today.

This paper is organized as follows. In Section 2, we
review the literature related to inventory location models. In
Section 3, we discuss inventory control and capacity con-
straint issues. In Section 4, we present the formulation of the
inventory location model with periodic review and stochastic
capacity constraints. Section 5 presents the proposed solution

approach based on Lagrangian relaxation. Section 6 presents
and analyzes the numerical results. Finally, Section 7 presents
conclusions, managerial insights, and suggestions for future
research.

2. Literature Review

Over the last twenty years, several authors have studied how
the inventory control decisions impact the Facility Location
Problem (FLP) through the different integrated inventory
location models. Barahona and Jensen [4] present an integer
programming (IP)model for the location of a plant with cycle
inventory costs, that is, the inventory required to satisfy the
demands between two consecutive orders. These inventory
costs are incorporated into the objective function as parame-
ters, constituting a third term that is added to the fixed facility
costs and transportation costs of Uncapacitated Fixed Charge
Location Problem (UFLP).The linear relaxation of the model
is solved through Dantzig-Wolfe decomposition. Nozick and
Turnquist [5] develop a linear approach to the safety stock
of a set of products based on the number of distribution
centers through a simple linear regression. This allows safety
stock costs to be directly included in the fixed cost coefficient
of the UFLP. The resolution of the model is carried out
through a hybrid heuristic established by Daskin [6]. Using
the same previous framework, Nozick and Turnquist [7]
expand their analysis by now considering a two-tier system
(plant or central warehouse and DCs), where decisions are
made considering whether products should have safety stock
on the DCs or at the plant. Nozick and Turnquist [8] modify
the previous formulations [5, 7] and now present amaximum
covering location model, which ensures finding a proportion
of the demand that meets a specific “coverage” distance
of a DC. Later, using the approach proposed by Nozick
and Turnquist [5], Lin et al. [9] solve a strategic design
model of a multilevel and multiproduct distribution system,
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incorporating economies of scale in transportation and safety
stock levels of the various products that are kept on the DCs
through a greedy heuristic. All the previous models pre-
sented incorporate the operation stock and safety stock costs
indirectly in the objective function and therefore, a linear
term is added to it, so these models are classified as mixed
integer programming models (MIP).

Erlebacher and Meller [10] are the first researchers to
formulate a MINLP to address the ILP, in which the locations
of the clients are continuously represented. Later Daskin et
al. [11] present a location model of DCs that incorporate
working and safety inventory costs, extending the UFLP
model. In addition, the model includes transport costs from
suppliers to DCs that explicitly combine economies of scale
into a fixed cost term. The model is formulated as MINLP,
where the average demand and total variance served by the
DCs are calculated as the sum of the average demands and
variances of the clients assigned to them, respectively. These
average demands of the DCs are incorporated directly into
the objective function through the economic order quantity
(EOQ) expression, which in turn structures the working
inventory costs. The variances of demand give the expression
of the safety stock costs. It should be noted that they consider
the ratio between the average demand and the variance of
all customers constant, which simplifies the resolution of
the problem. The authors propose a Lagrangian relaxation
solution algorithm, in which they relax the restrictions of
allocation customers to DCs. Shen et al. [12] restructure the
model of Daskin et al. [11] as an IP model of Set-Covering;
then they solve though branch-and-price approach, a variant
of branch-and-bound in which nodes are processed by
solving linear relaxations through column generation. Shu et
al. [13] modify the model of Shen et al. [12], incorporating
a generalization of the assumption that the demands and
variances of the clients are proportional, making it more
realistic. Similar to Shen et al. [12], they first restructure the
model as a Set-Covering problem and solve it with the branch
and price method, but making it more efficient. Snyder et
al. [14] present a stochastic programming version of the
Daskin et al. [11] model, where allocation decisions are made
under random parameters such as the average daily demand
and variance of the average demand of each retailer, which
are described by discrete scenarios. The model minimizes
the total expected cost (including location, transportation,
and inventory costs) of the system in all scenarios. The
location model explicitly handles the effects of economies of
scale and risk pooling that result from the consolidation of
inventory sites. They present an algorithm based on Lagrang-
ian relaxation, which, as Daskin et al. [11] and Shen et al. [12],
relaxes allocation constraints.

Miranda and Garrido [15] solve SCND through a simul-
taneous approach and incorporate inventory control deci-
sions (EOQ and safety stock) within a CFLP, considering a
stochastic demand distributed in a normal form, also model-
ing the phenomenon of risk pooling. This MINLP model
is called a distribution network design model with risk
pooling (DNDRP). The DNDRP includes, as constraints, the
calculation of the total demands and variances served by each
DC. This contrasts with the formulation of Daskin et al. [11],

Shen et al. [12], Snyder et al. [14], and Ozsen et al. [16, 17],
which incorporate them directly into the objective function
through operation inventory costs and safety stock costs,
respectively. Another difference between the models men-
tioned above is that Miranda and Garrido [15] do not expli-
citly consider economies of scale in transport costs.Thedeter-
ministic capacity constraint of the DCs is formulated as
described by Daskin [6]. The authors do not consider any
assumption that may restrict the relationship between cus-
tomer demands and variances.

The traditional deterministic capacitated location models
do not consider inventory decision, and therefore capacity
is typically calculated in an exogenous manner. As a result,
to count enough inventory capacity, additional DCs must be
installed. However, by ordering more frequently, we could
have a lower average stock level and therefore lower costs.
The papers that most resemble our work are the CFLP with
stochastic inventory capacity and risk pooling proposed by
Miranda and Garrido [18, 19] and Ozsen et al. [16, 17];
however, we consider a periodic review inventory control
policy. Miranda and Garrido [18] use the same framework
introduced in Miranda and Garrido [15] replacing the deter-
ministic inventory capacity constraint in DCs by a stochastic
constraint based on chance constrained programming. This
constraint ensures that the inventory capacity for each DC
is at least with respect to one 1-𝛽 probability. Additionally,
they incorporate an order quantity restriction for each DC.
One of the relevant conclusions of the modeling approach
that they propose is that a decrease in the inventory capacity
does not certainly imply an increase in the number of opened
warehouses. In fact, decreasing the order size allows the
optimal allocation of customers (those with more significant
variances) in different warehouses, reducing the total cost
of the system. Miranda and Garrido [19] use the same
formulation of Miranda and Garrido [18]; nevertheless, the
authors explain in detail the exact method of resolution to
find solutions to the subproblems of each warehouse. This
procedure is based on the incorporation of a constraint that
represents a set of inequalities valid for 𝐷𝑖 and 𝑉𝑖, where Ω
is the domain of all the possible values of each combination
of clients. The authors present a heuristic approach based
on Lagrangian relaxation and the subgradient method. They
relax the demand and variance constraints of DCs and
allocation constraints. Lagos et al. [20] consider the Miranda
and Garrido [18] model and solve it using a hybrid algorithm
combining Ant Colony Optimization (ACO) and Lagrangian
relaxation.TheyuseACO to assign clients to a subset of stores
that is previously generated by Lagrangian relaxation. The
results show that the hybrid approach is quite competitive,
obtaining almost optimal solutions within a reasonable time.

The study by Ozsen et al. [16] is based on the model of
Daskin et al. [11] to formulate a capacitated location model
with risk pooling (CLMRP). The model captures the inter-
dependence between capacity and inventory management
in DCs. They assume that there is no correlation between
daily retailer demands and that it follows a Poisson process
[11, 12, 14].This implies that the variance of the daily demand
is equal to the daily demand average for each retailer. The
model simultaneously determineswarehouse locations, order
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sizes from the plant to warehouses, working and safety stock
levels at warehouses, and the allocation of retailers to the
warehouses. Similar to Miranda and Garrido [18, 19], the
inventory capacity constraint is stochastically modeled by
chance constrained programming. The authors propose a
Lagrangian relaxation solution algorithm, in which they relax
the allocation constraints, offering low gaps with moderate
computational requirements for large-scale instances. Ozsen
et al. [17] slightly modify the formulation developed byOszen
et al. [16], allowing retailers to be supplied by more than one
DC on a probabilistic basis.

Jin et al. [21] propose a simultaneous localization and
inventory model with multiple products. The model is for-
mulated as theCapacitated P-Median Problem (CPMP).They
assume that the stochastic demands of retailers are normally
distributed. The model is formulated as a MINLP and solved
through a combined simulation annealing algorithm (CSA).
Chen et al. [22] discuss a reliable ILP, where facilities are sub-
ject to disruption risks. When a facility fails, customers can be
reassigned to a different facility that exists to avoid high costs
associated with loss of services. They propose a MINLP that
minimizes the sum of installation costs, expected inventory
costs, and costs expected under normal and breakdown
states. They develop a Lagrangian relaxation solution frame-
work, including an exact algorithm for relaxed nonlinear sub-
problems.

Several recent studies, including Atamtürk et al. [23],
Shahabi et al. [24], and Schuster and Tancrez [25], have
reformulated ILP with uncertain demand as Conic Quadratic
Mixed-Integer Program (CQMIP). Atamtürk et al. [23] pro-
pose a joint inventory location model with stochastic demand
considering various cases with uncapacitated and capacitated
facilities, correlated retailer demand, stochastic lead times,
and multiple products. Later, Shahabi et al. [24] study a loca-
tion problem with a three-level inventory, where the demand
for retailers is assumed to be correlated. Besides, they pro-
pose a solution approach, based on an external approxima-
tion algorithm, which shows the advantage of using this
methodology. Finally, the authors show that the omission of
the effect of correlation can lead to substantially suboptimal
solutions. Schuster and Tancrez [25] provide a nonlinear
continuous formulation that integrates location, order, inven-
tory, and assignment decisions and includes transport, cycle,
and safety stock costs. Then, considering that the model
becomes linear when specific variables are fixed, they propose
a heuristic algorithm that solves the resulting linear program.
Finally, they use the solution to improve the estimates of
variables for the next iteration. In order to show the efficiency
of the algorithm, they compare their results with those of
Atamtürk et al., 2012 [23].They conclude that safety stock and
risk pooling in retailers affect the design of a supply chain.

Petridis [26] addresses the optimal design of a mul-
tiproduct and multistep supply network under demand
uncertainty. The system consists of multiproduct production
sites, warehouses, and distribution centers and decisions are
made regarding the selection of facilities and their capacity.
Also, decision variables are based on the flow of products
transferred and safety stock in each distribution center. The
delivery time of an order to a customer is calculated, using

the probabilities of excess and deficit of inventory. All these
decisions are incorporated in a single period, configuring a
MINLP. The author explores linearization techniques for the
highly nonlinear terms selected from the models, reducing
the computational effort for the solution of the model. Qu
et al. [27] propose an ILP with stochastic demand through
the application of two replacement policies, joint replenish-
ment (JR) and independent replacement (IR). They solve
the problem through three algorithms: Genetic Algorithm
(GA), Evolutionary Differential Hybrid Algorithm (HDE),
and Hybrid Self-adapting Evolutionary Differential Hybrid
Algorithm (HSDE). Their computational results show the
effectiveness of these algorithms. The results of the ILP
suggest that the policy of JR can obtain better solutions
regarding costs than the IR policy, due to the fixed ordering
costs being shared in the same order.

All the previous papers and their associated analyzed
models tended to focus on the ILP with inventory continuous
review policy (s, S), rather than inventory periodic review
policy. Yao et al. [28] discuss the latter of the two. They
study a problem of location and inventory that incorporates
multiple sources of warehouses, similar to that of Ozsen et
al. [17]. In this problem, the multiple products are produced
in several plants. The problem is formulated as a MINLP
model. Berman et al. [29] incorporate a (R, S) periodic review
inventory policy in the formulation of a coordinated inven-
tory location model, where the choice of revision intervals
in the DCs achieves coordination of the system.They present
two types of coordination: total coordination, where all DCs
have the same interval of review, and partial coordination,
where each DC can choose its own review interval. While
total coordination increases location costs and inventory
costs, it is likely to reduce overall system operating costs, i.e.,
if operational costs such as scheduling delivery are taken into
account. The problem is determining the location of the DCs,
the allocation of retailers to the DCs, and the parameters
of the inventory policy of the DCs, so that the total cost
of the whole system is minimized. The model is formulated
as a nonlinear integer programming problem and they solve
it through an efficient Lagrangian relaxation algorithm. The
results of their computational experiments and case study
suggest that the increased costs due to full coordination, com-
pared to partial coordination, are not significant. Therefore,
total coordination, while making the model more practical, is
economically justifiable. Cabrera et al. [30] formulate a novel
joint localization and inventory model including a stochastic
capacity constraint based on an Inventory Location Model
Periodic Review (ILM-PR) inventory control policy. One of
the modifications that they make regarding the continuous
review policy is the incorporation of the undershoot concept
that has not been considered in the previous ILP models.
Based on this, they design a distribution network for a two-
tier supply chain, quantifying the impact of the inventory
control period review on the configuration costs of net-
work and system. They do this considering both warehouse
location and customer allocation decisions. To solve the
problem they apply two heuristics, Tabu Search and Parti-
cle Swarm Optimization (PSO). According to the authors,
this methodology shows an effective convergence rate. This
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Figure 2: Inventory levels under an (s, S, R) control policy.

confirms that inventory control policy decisions have an
effect on the design of the distribution network. Vahdani et
al. [31] consider an ILP in a three-tier supply chain, where it
is assumed that retailer demand is correlated and inventory
shortage is allowed. The inventory periodic review control
policy is utilized. In order to solve the joint ILP, they propose
an optimization model based on MINLP, where the objective
function is the minimization of total costs of the supply
chain. To solve this MINLP model, they present a GA and
a simulated annealing (SA) algorithm. Since the perform-
ance of the metaheuristic algorithms depends on the con-
figuration of the parameters, the Taguchi method is used to
establish the parameters of the indicated algorithms. Finally,
the algorithms proposed by the authors are used in several
numerical instances that indicate a better GA performance
compared to the SA.

3. Inventory Control Policy and
Total System Cost

In this section, we discuss inventory control and capacity con-
straint issues involved in a periodic review policy within the
facility location modeling structure with stochastic demand.
We will use the methodology proposed by Miranda and
Cabrera [32] and Cabrera et al. [30]. When a periodic review
is taken into account in an (si, Si, Ri) inventory control policy,
capacity constraints cannot be stated at anymoment. In an (si ,
Si, Ri) inventory control policy, inventory levels are reviewed
afterRi periods for eachwarehouse i. Note that this parameter
could be optimized; however, in the present research, it is
fixed. In addition, if the inventory level is lower than the
level si, then an order is placed to reach the objective level Si.
Consequently, order size for each warehouse imust consider
the well-known undershoot magnitude (USi), which is the
number of items required to be ordered in addition to Si-si,
in order to reach Si units of inventory, as shown in Figure 2.
In other words, the USi is the difference between the reorder
point si and the inventory level directly prior to ordering.

For a given review period𝑅𝑖, demandmean, and variance
of a warehouse 𝑖 (𝐷𝑖 and 𝑉𝑖), the average undershoot magni-
tude is computed as follows [33]:

𝑈𝑆𝑖 (𝐷𝑖, 𝑉𝑖) = 𝑉𝑖2 ⋅ 𝐷𝑖 + 𝐷𝑖𝑅𝑖2 (1)

Peak inventory levels are not controlled at any moment,
solely in specific moments for each review period. This peak
inventory level is reached only when orders arrive at the
warehouse, 𝐿𝑇𝑖 time units after the previous order, and only
if an order was submitted to the central warehouse or plant.
Accordingly, each time an order arrives at a warehouse the
inventory level is

(𝑠𝑖 − 𝑈𝑆𝑖) + (𝑆𝑖 − 𝑠𝑖 + 𝑈𝑆𝑖) − 𝑆𝐷𝑖 (𝐿𝑇𝑖)
= 𝑆𝑖 − 𝑆𝐷𝑖 (𝐿𝑇𝑖) (2)

When an order is submitted to the plant, it is required that
total inventory position reaches the level 𝑆𝑖, and 𝐿𝑇𝑖 later;
inventory level is reduced by lead time demand 𝑆𝐷𝑖(𝐿𝑇𝑖).
Similar to Miranda and Garrido [18, 19], we propose that this
inventory capacity constraint must be reviewed for each peak
inventory instant (i.e., for each order period) with a fixed and
known probability1−𝛽, but now assuming a periodic review,
as follows:

Pr (𝑆𝑖 − 𝑆𝐷𝑖 (𝐿𝑇𝑖) ≤ 𝐼𝐶𝑎𝑝) = 1 − 𝛽 (3)

This constraint is reformulated as a deterministic nonlinear
constraint, which guarantees that the probabilistic constraint
is fulfilled:

𝑆𝑖 ≤ 𝐼𝐶𝑎𝑝 + 𝐷𝑖 ⋅ 𝐿𝑇𝑖 − Z1−𝛽√𝑉𝑖 ⋅ 𝐿𝑇𝑖 (4)

We specify the minimum order size as 𝑄𝑖:
𝑆𝑖 = 𝑠𝑖 + 𝑄𝑖 ←→ 𝑄𝑖 = 𝑆𝑖 − 𝑠𝑖 (5)

In consequence, constraint (4) can be written as

𝑄𝑖 + 𝑠𝑖 ≤ 𝐼𝐶𝑎𝑝 + 𝐷𝑖 ⋅ 𝐿𝑇𝑖 − Z1−𝛽√𝑉𝑖 ⋅ 𝐿𝑇𝑖 (6)
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Finally, the reorder point 𝑠𝑖 is set in order to ensure that an
order is not submitted at eachmoment in time (i.e., inventory
level is larger than 𝑠𝑖). The inventory level must be enough to
fill demanduntil the next order has arrived𝑅𝑖+𝐿𝑇𝑖 time units,
with a probability or service level 1 − 𝛼:

Pr (𝑆𝐷𝑖 (𝑅𝑖 + 𝐿𝑇𝑖) ≤ 𝑠𝑖) = 1 − 𝛼 (7)

Similar to (3), this constraint is reformulated as a determin-
istic nonlinear constraint:

𝑠𝑖 = 𝐷𝑖 ⋅ (𝐿𝑇𝑖 + 𝑅𝑖) + Z1−𝛼 ⋅ √𝐿𝑇𝑖 + 𝑅𝑖√𝑉𝑖 (8)

Finally, replacing (8) in (6), the inventory capacity constraint
for each warehouse 𝑖 can be written as

𝑄𝑖 + 𝐷𝑖𝑅𝑖 + (𝑍1−𝛼√𝐿𝑇𝑖 + 𝑅𝑖 + 𝑍1−𝛽√𝐿𝑇𝑖)√𝑉𝑖
≤ 𝐼𝐶𝑎𝑝 (9)

Based on a periodic (𝑠𝑖, 𝑆𝑖, 𝑅𝑖) inventory control policy, the
safety stock to be included in the objective function is the
average inventory level just before an order arrives at the
warehouse:

(𝑠𝑖 − 𝑈𝑆𝑖) − 𝐷𝑖𝐿𝑇𝑖 = 𝐷𝑖𝑅𝑖 + Z1−𝛼 ⋅ √𝐿𝑇𝑖 + 𝑅𝑖√𝑉𝑖
− 𝑈𝑆𝑖 (𝐷𝑖, 𝑉𝑖) (10)

In addition, expected inventory and ordering costs related to
order quantity or cycle inventory are evaluated in terms of the
minimum order quantity 𝑄𝑖 and the average undershoot𝑈𝑆𝑖,
as in EOQ model:

𝑂𝐶𝑖 ⋅ 𝐷𝑖(𝑄𝑖 + 𝑈𝑆𝑖 (𝐷𝑖, 𝑉𝑖)) + 𝐻𝐶𝑖 ⋅ (𝑄𝑖 + 𝑈𝑆𝑖 (𝐷𝑖, 𝑉𝑖))2 (11)

4. Model Formulation

In this section, according to the previous inventory control
assumptions, the Inventory Location Model with Stochastic
Constraints of Inventory Capacity under Periodic Review

(ILM-SCC-PR) is presented as a Stochastic Non-Linear Non-
Convex Mixed Integer Programming (SNL-MIP) model. In
this model, we tackle the problem of storage and delivery of
a single product from a single plant or central warehouse to a
collection of retailers through a set of candidate warehouses
while minimizing the total system cost.

The parameters of the model are as follows:

𝑁: number of available sites to install warehouses𝑀: number of customers to be served𝑅𝐶𝑖: transportation unit cost between the plant and
the warehouse 𝑖 ($/unit)𝑇𝐶𝑖𝑗: fixed transportation cost between the ware-
house 𝑖 and the customer 𝑗𝐹𝑖: operating fixed cost for each warehouse 𝑖 ($/day)𝐻𝐶𝑖: holding cost per time unit at site 𝑖 ($/day)𝑂𝐶𝑖: fixed ordering cost per time unit at site 𝑖 ($/day)𝐿𝑇𝑖: deterministic lead time when ordering from
warehouse 𝑖𝑑𝑗: mean of the daily demand for each customer 𝑗
V𝑗: variance of the daily demand for each customer 𝑗
V𝑗: variance of the daily demand for each customer 𝑗𝑍1−𝛼: value of the standard normal distribution,
which accumulates a probability of 1 − 𝛼𝑍1−𝛽: value of the standard normal distribution,
which accumulates a probability of 1 − 𝛽𝑄𝐶𝑎𝑝𝑖: order capacity of the warehouse 𝑖𝐼𝐶𝑎𝑝𝑖: inventory capacity of the warehouse 𝑖

Thevariables considered in the mathematical formulation are
as follows:𝑋𝑖: it takes the value 1, if a warehouse is located on site 𝑖,
and 0 otherwise𝑌𝑖𝑗: it takes the value 1, if warehouse 𝑖 serves customer 𝑗,
and 0 otherwise𝑄𝑖: order size at the warehouse 𝑖 (units)𝐷𝑖: served demand by each warehouse 𝑖 (units)𝑉𝑖: variance of the served demand by each warehouse 𝑖
Consequently, the SNL-MIP model to solve the problem is

min
𝑁∑
𝑖=1

𝐹𝑖𝑋𝑖 + 𝑁∑
𝑖=1

𝑀∑
𝑗=1

(𝑅𝐶𝑖𝑑𝑗 + 𝑇𝐶𝑖𝑗)𝑌𝑖𝑗 + 𝑁∑
𝑖=1

(𝑂𝐶𝑖 𝐷𝑖𝑄𝑖 + 𝑈𝑆𝑖 (𝐷𝑖, 𝑉𝑖) + 𝐻𝐶𝑖𝑄𝑖 + 𝑈𝑆𝑖 (𝐷𝑖, 𝑉𝑖)2 )
+ 𝑁∑
𝑖=1

𝐻𝐶𝑖 (𝐷𝑖𝑅𝑖 + 𝑍1−𝛼√𝐿𝑇𝑖 + 𝑅𝑖√𝑉𝑖 − 𝑈𝑆𝑖 (𝐷𝑖, 𝑉𝑖))
(12)

s.t.: 𝑁∑
𝑖=1

𝑌𝑖𝑗 = 1 ∀𝑗 = 1, . . . ,𝑀 (13)

𝑌𝑖𝑗 ≤ 𝑋𝑖 ∀𝑖 = 1, . . . , 𝑁, ∀𝑗 = 1, . . . ,𝑀 (14)

𝑄𝑖 + 𝐷𝑖𝑅𝑖 + (𝑍1−𝛼√𝐿𝑇𝑖 + 𝑅𝑖 + 𝑍1−𝛽√𝐿𝑇𝑖)√𝑉𝑖 ≤ 𝐼𝐶𝑎𝑝𝑖 ⋅ 𝑋𝑖 ∀𝑖 = 1, . . . ,𝑁 (15)
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𝑄𝑖 + 𝑈𝑆𝑖 (𝐷𝑖, 𝑉𝑖) ≤ 𝑄𝐶𝑎𝑝𝑖 ∀𝑖 = 1, . . . ,𝑁 (16)

𝐷𝑖 = 𝑀∑
𝑗=1

𝑑𝑗𝑌𝑖𝑗 ∀𝑖 = 1, . . . ,𝑁 (17)

𝑉𝑖 = 𝑀∑
𝑗=1

V𝑗𝑌𝑖𝑗 ∀𝑖 = 1, . . . ,𝑁 (18)

𝑈𝑆𝑖 (𝐷𝑖, 𝑉𝑖) = 𝑉𝑖2 ⋅ 𝐷𝑖 + 𝐷𝑖𝑅𝑖2 ∀𝑖 = 1, . . . , 𝑁 (19)

𝑋𝑖, 𝑌𝑖𝑗 ∈ {0, 1} ∀𝑖 = 1, . . . ,𝑁, ∀𝑗 = 1, . . . ,𝑀 (20)

The objective function (12) minimizes the total system cost.
The first term is the fixed and operating costs when opening
warehouses. The second term is the transportation cost
between each warehouse and its allocated customers, plus
the transportation and ordering costs between the plant and
warehouses. The third term contains fixed and inventory
costs related to warehouse order size. The fourth term
represents the storage cost associated with safety stock at
each warehouse. Constraints (13) ensure that each customer
is served exactly by one warehouse. Constraints (14) state that
customers can only be assigned to open warehouses (𝑋𝑖 = 1).
Constraints (15) ensure that inventory capacity for each ware-
house is fulfilled at least with a probability 1 − 𝛽. Constraints
(16) ensure that the order size is below the capacity order size
allowed to warehouse 𝑖. Equations (17) and (18) determine the
mean and variance of the served demand by each warehouse.
Equations (19) calculate average undershoot magnitude for
eachwarehouse. Finally, (20) indicates the domain of decision
variables.

The objective function and the two stochastic constraints
are nonlinear, resulting in a model that is very hard to
solve for large-scale instances. The complexity of the problem
motivated us to propose a heuristic approach to solve it. An
explanation of the algorithm is described in the next section.

5. Solution Approach

Most of the conventional location models have been
solved successfully by Lagrangian relaxation-based heuris-
tics. Fisher [34, 35] provides a detailed analysis of Lagrangian
relaxation. Likewise, Daskin [6] applies the same solution
approach to solve the UFLP and the CFLP obtaining reason-
ably good results. Because ILM-SCC-PR is an extension of the
UFLP, we implement a Lagrangian relaxation algorithm and
subgradient method to solve it. We develop two relaxations
to solve the ILM-SCC-PR. First, we relax constraints (17) and
(18), decoupling binary network design variables (X and Y)
from inventory control decisions (Q) and mean and variance
for demand (D and V) in each warehouse. In addition, we
relax customer assignment constraints (13), similar to several
Lagrangian relaxation applications for standard FLP and ILP.
Second, we relax only constraints (17) and (18).

5.1. First Lagrangian Relaxation Algorithm. Associating the
dual variables vectors 𝜆 and 𝜔 with the constraints (17) and
(18), respectively, and 𝜓 with constraint (13), we obtain the
following relaxed problem:

𝑅𝐿𝑃1

min
𝑁∑
𝑖=1

𝐹𝑖𝑋𝑖 + 𝑁∑
𝑖=1

𝑀∑
𝑗=1

((𝑅𝐶𝑖 + 𝜆𝑖) 𝑑𝑗 + 𝑇𝐶𝑖𝑗 + 𝜔𝑖V𝑗 − 𝜓𝑗)𝑌𝑖𝑗 + 𝑁∑
𝑖=1

(𝑂𝐶𝑖 𝐷𝑖(𝑄𝑖 + 𝑈𝑆𝑖 (𝐷𝑖, 𝑉𝑖)) + 𝐻𝐶𝑖 (𝑄𝑖 + 𝑈𝑆𝑖 (𝐷𝑖, 𝑉𝑖))2 )
+ 𝑁∑
𝑖=1

𝐻𝐶𝑖 (𝐷𝑖𝑅𝑖 + 𝑍1−𝛼√𝐿𝑇𝑖 + 𝑅𝑖√𝑉𝑖 − 𝑈𝑆𝑖 (𝐷𝑖, 𝑉𝑖)) − 𝑁∑
𝑖=1

(𝜆𝑖𝐷𝑖 + 𝜔𝑖𝑉𝑖) + 𝑀∑
𝑗=1

𝜓𝑗
s.t.: 𝑌𝑖𝑗 ≤ 𝑋𝑖 ∀𝑖 = 1, . . . ,𝑁, ∀𝑗 = 1, . . . ,𝑀

𝑄𝑖 + 𝐷𝑖𝑅𝑖 + (𝑍1−𝛼√𝐿𝑇𝑖 + 𝑅𝑖 + 𝑍1−𝛽√𝐿𝑇𝑖)√𝑉𝑖 ≤ 𝐼𝐶𝑎𝑝𝑖 ⋅ 𝑋𝑖 ∀𝑖 = 1, . . . , 𝑁
𝑄𝑖 + 𝑈𝑆𝑖 (𝐷𝑖, 𝑉𝑖) ≤ 𝑄𝐶𝑎𝑝𝑖 ∀𝑖 = 1, . . . , 𝑁
𝑈𝑆𝑖 (𝐷𝑖, 𝑉𝑖) = 𝑉𝑖2 ⋅ 𝐷𝑖 + 𝐷𝑖𝑅𝑖2 ∀𝑖 = 1, . . . ,𝑁
𝑋𝑖, 𝑌𝑖𝑗 ∈ {0, 1} ∀𝑖 = 1, . . . , 𝑁, ∀𝑗 = 1, . . . ,𝑀

(21)
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For fixed values of the Lagrangian multipliers, 𝜆,𝜔, and𝜓, we
minimize (21) over location variables, 𝑋𝑖, and the assignment

variables 𝑌𝑖𝑗. For the given 𝜆, 𝜔, and 𝜓 vectors, the problem
decouples to the following subproblem for each warehouse 𝑖:

𝑆𝑃𝑖
min 𝐹𝑖𝑋𝑖 + 𝑀∑

𝑗=1

((𝑅𝐶𝑖 + 𝜆𝑖) 𝑑𝑗 + 𝑇𝐶𝑖𝑗 + 𝜔𝑖V𝑗 − 𝜓𝑗)𝑌𝑖𝑗 + (𝑂𝐶𝑖 𝐷𝑖(𝑄𝑖 + 𝑈𝑆𝑖 (𝐷𝑖, 𝑉𝑖)) + 𝐻𝐶𝑖 (𝑄𝑖 + 𝑈𝑆𝑖 (𝐷𝑖, 𝑉𝑖))2 )
+ 𝐻𝐶𝑖 (𝐷𝑖𝑅𝑖 + 𝑍1−𝛼√𝐿𝑇𝑖 + 𝑅𝑖√𝑉𝑖 − 𝑈𝑆𝑖 (𝐷𝑖, 𝑉𝑖)) − (𝜆𝑖𝐷𝑖 + 𝜔𝑖𝑉𝑖)

s.t.: 𝑌𝑖𝑗 ≤ 𝑋𝑖 ∀𝑗 = 1, . . . ,𝑀
𝑄𝑖 + 𝐷𝑖𝑅𝑖 + (𝑍1−𝛼√𝐿𝑇𝑖 + 𝑅𝑖 + 𝑍1−𝛽√𝐿𝑇𝑖)√𝑉𝑖 ≤ 𝐼𝐶𝑎𝑝𝑖 ⋅ 𝑋𝑖
𝑄𝑖 + 𝑈𝑆𝑖 (𝐷𝑖, 𝑉𝑖) ≤ 𝑄𝐶𝑎𝑝𝑖
𝑈𝑆𝑖 (𝐷𝑖, 𝑉𝑖) = 𝑉𝑖2 ⋅ 𝐷𝑖 + 𝐷𝑖𝑅𝑖2(𝐷𝑖, 𝑉𝑖) ∈ Ω𝑋𝑖, 𝑌𝑖𝑗 ∈ {0, 1} ∀𝑗 = 1, . . . ,𝑀

(22)

We include a set of valid inequalities (𝐷𝑖, 𝑉𝑖) ∈ Ω to solve pre-
vious subproblems and to reduce duality gaps by increasing
upper bounds. Valid inequalities are defined as a set of con-
straints, which bound all feasible solutions of dependent
variables 𝐷𝑖 and 𝑉𝑖 [19].

Each subproblem (22) may be decoupled for the fixed
values of the Lagrangian multipliers for each iteration 𝑘,𝜆𝑘𝑖 , 𝜔𝑘𝑖 , 𝜓𝑘𝑖 , as follows:

𝑆𝑃1𝑘𝑖
Π𝑘𝑖 = min (𝑂𝐶𝑖 𝐷𝑖(𝑄𝑖 + 𝑈𝑆𝑖 (𝐷𝑖, 𝑉𝑖)) + 𝐻𝐶𝑖 (𝑄𝑖 + 𝑈𝑆𝑖 (𝐷𝑖, 𝑉𝑖))2 ) + 𝐻𝐶𝑖 (𝐷𝑖𝑅𝑖 + 𝑍1−𝛼√𝐿𝑇𝑖 + 𝑅𝑖√𝑉𝑖 − 𝑈𝑆𝑖 (𝐷𝑖, 𝑉𝑖))

− (𝜆𝑘𝑖𝐷𝑖 + 𝜔𝑘𝑖 𝑉𝑖)
s.t.: 𝑄𝑖 + 𝐷𝑖𝑅𝑖 + (𝑍1−𝛼√𝐿𝑇𝑖 + 𝑅𝑖 + 𝑍1−𝛽√𝐿𝑇𝑖)√𝑉𝑖 ≤ 𝐼𝐶𝑎𝑝𝑖

𝑄𝑖 + 𝑈𝑆𝑖 (𝐷𝑖, 𝑉𝑖) ≤ 𝑄𝐶𝑎𝑝𝑖
𝑈𝑆𝑖 (𝐷𝑖, 𝑉𝑖) = 𝑉𝑖2 ⋅ 𝐷𝑖 + 𝐷𝑖𝑅𝑖2(𝐷𝑖, 𝑉𝑖) ∈ Ω

(23)

𝑆𝑃2𝑘𝑖
𝜃𝑘𝑖 = min (𝐹𝑖 + Π𝑖)𝑋𝑖

+ 𝑀∑
𝑗=1

((𝑅𝐶𝑖 + 𝜆𝑘𝑖 ) 𝑑𝑗 + 𝑇𝐶𝑖𝑗 + 𝜔𝑘𝑖 V𝑗 − 𝜓𝑘𝑗 ) 𝑌𝑖𝑗
s.t.: 𝑌𝑖𝑗 ≤ 𝑋𝑖 ∀𝑗 = 1, . . . ,𝑀

𝑋𝑖, 𝑌𝑖𝑗 ∈ {0, 1} ∀𝑗 = 1, . . . ,𝑀
(24)

𝜃𝑖 denotes the benefit of facility 𝑖 and represents the contri-
bution of opening facility 𝑖 to the objective function (12).This
decomposition consists of solving 𝑆𝑃1𝑖 to compute Π𝑖 and
then solving 𝑆𝑃2𝑖 to calculate 𝜃𝑖, based on the computed Π𝑖,
as explained in Section 5.3.

5.2. Second Lagrangian Relaxation Algorithm. Associating
the dual variables vectors 𝜆 and 𝜔 with constraints (17) and
(18), respectively, we obtain the following relaxed problem:



Mathematical Problems in Engineering 9

𝑅𝐿𝑃2

min
𝑁∑
𝑖=1

𝐹𝑖𝑋𝑖 + 𝑁∑
𝑖=1

𝑀∑
𝑗=1

((𝑅𝐶𝑖 + 𝜆𝑖) 𝑑𝑗 + 𝑇𝐶𝑖𝑗 + 𝜔𝑖V𝑗)𝑌𝑖𝑗 + 𝑁∑
𝑖=1

(𝑂𝐶𝑖 𝐷𝑖(𝑄𝑖 + 𝑈𝑆𝑖 (𝐷𝑖, 𝑉𝑖)) + 𝐻𝐶𝑖 (𝑄𝑖 + 𝑈𝑆𝑖 (𝐷𝑖, 𝑉𝑖))2 )

+ 𝑁∑
𝑖=1

𝐻𝐶𝑖 (𝐷𝑖𝑅𝑖 + 𝑍1−𝛼√𝐿𝑇𝑖 + 𝑅𝑖√𝑉𝑖 − 𝑈𝑆𝑖 (𝐷𝑖, 𝑉𝑖)) − 𝑁∑
𝑖=1

(𝜆𝑖𝐷𝑖 + 𝜔𝑖𝑉𝑖)
s.t.: 𝑁∑

𝑖=1

𝑌𝑖𝑗 = 1 ∀𝑗 = 1, . . . ,𝑀
𝑌𝑖𝑗 ≤ 𝑋𝑖 ∀𝑖 = 1, . . . , 𝑁, ∀𝑗 = 1, . . . ,𝑀
𝑄𝑖 + 𝐷𝑖𝑅𝑖 + (𝑍1−𝛼√𝐿𝑇𝑖 + 𝑅𝑖 + 𝑍1−𝛽√𝐿𝑇𝑖)√𝑉𝑖 ≤ 𝐼𝐶𝑎𝑝 ⋅ 𝑋𝑖 ∀𝑖 = 1, . . . ,𝑁
𝑄𝑖 + 𝑈𝑆𝑖 (𝐷𝑖, 𝑉𝑖) ≤ 𝑄𝐶𝑎𝑝 ∀𝑖 = 1, . . . ,𝑁
𝑈𝑆𝑖 (𝐷𝑖, 𝑉𝑖) = 𝑉𝑖2 ⋅ 𝐷𝑖 + 𝐷𝑖𝑅𝑖2 ∀𝑖 = 1, . . . , 𝑁
𝑋𝑖, 𝑌𝑖𝑗 ∈ {0, 1} ∀𝑖 = 1, . . . , 𝑁, ∀𝑗 = 1, . . . ,𝑀

(25)

For fixed values of the Lagrangian multipliers, 𝜆 and 𝜔, we
want to minimize (25) over location variables, 𝑋𝑖, and the

assignment variables 𝑌𝑖𝑗. For the given 𝜆 and 𝜔 vectors, the
problem decouples to the following subproblems:

𝑆𝑃1

min
𝑁∑
𝑖=1

(𝑂𝐶𝑖 𝐷𝑖(𝑄𝑖 + 𝑈𝑆𝑖 (𝐷𝑖, 𝑉𝑖)) + 𝐻𝐶𝑖 (𝑄𝑖 + 𝑈𝑆𝑖 (𝐷𝑖, 𝑉𝑖))2 ) + 𝑁∑
𝑖=1

𝐻𝐶𝑖 (𝐷𝑖𝑅𝑖 + 𝑍1−𝛼√𝐿𝑇𝑖 + 𝑅𝑖√𝑉𝑖 − 𝑈𝑆𝑖 (𝐷𝑖, 𝑉𝑖))
− 𝑁∑
𝑖=1

(𝜆𝑖𝐷𝑖 + 𝜔𝑖𝑉𝑖)
s.t.: 𝑄𝑖 + 𝐷𝑖𝑅𝑖 + (𝑍1−𝛼√𝐿𝑇𝑖 + 𝑅𝑖 + 𝑍1−𝛽√𝐿𝑇𝑖)√𝑉𝑖 ≤ 𝐼𝐶𝑎𝑝 ⋅ 𝑋𝑖 ∀𝑖 = 1, . . . ,𝑁

𝑄𝑖 + 𝑈𝑆𝑖 (𝐷𝑖, 𝑉𝑖) ≤ 𝑄𝐶𝑎𝑝 ∀𝑖 = 1, . . . ,𝑁
𝑈𝑆𝑖 (𝐷𝑖, 𝑉𝑖) = 𝑉𝑖2 ⋅ 𝐷𝑖 + 𝐷𝑖𝑅𝑖2 ∀𝑖 = 1, . . . , 𝑁

(26)

𝑆𝑃2
min

𝑁∑
𝑖=1

𝐹𝑖𝑋𝑖 + 𝑁∑
𝑖=1

𝑀∑
𝑗=1

((𝑅𝐶𝑖 + 𝜆𝑖) 𝑑𝑗 + 𝑇𝐶𝑖𝑗 + 𝜔𝑖V𝑗) 𝑌𝑖𝑗
s.t.: 𝑁∑

𝑖=1

𝑌𝑖𝑗 = 1 ∀𝑗 = 1, . . . ,𝑀

𝑌𝑖𝑗 ≤ 𝑋𝑖 ∀𝑖 = 1, . . . , 𝑁, ∀𝑗 = 1, . . . ,𝑀
𝑋𝑖, 𝑌𝑖𝑗 ∈ {0, 1} ∀𝑖 = 1, . . . , 𝑁, ∀𝑗 = 1, . . . ,𝑀

(27)

Each subproblem (26) may be decoupled for the fixed values
of the Lagrangian multipliers for each iteration 𝑘, 𝜆𝑘𝑖 , 𝜔𝑘𝑖 , in
the following subproblems for each warehouse 𝑖:
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𝑆𝑃1𝑘𝑖

Π𝑘𝑖 = min (𝑂𝐶𝑖 𝐷𝑖(𝑄𝑖 + 𝑈𝑆𝑖 (𝐷𝑖, 𝑉𝑖)) + 𝐻𝐶𝑖 (𝑄𝑖 + 𝑈𝑆𝑖 (𝐷𝑖, 𝑉𝑖))2 ) + 𝐻𝐶𝑖 (𝐷𝑖𝑅𝑖 + 𝑍1−𝛼√𝐿𝑇𝑖 + 𝑅𝑖√𝑉𝑖 − 𝑈𝑆𝑖 (𝐷𝑖, 𝑉𝑖))
− (𝜆𝑘𝑖𝐷𝑖 + 𝜔𝑘𝑖 𝑉𝑖)

s.t.: 𝑄𝑖 + 𝐷𝑖𝑅𝑖 + (𝑍1−𝛼√𝐿𝑇𝑖 + 𝑅𝑖 + 𝑍1−𝛽√𝐿𝑇𝑖)√𝑉𝑖 ≤ 𝐼𝐶𝑎𝑝
𝑄𝑖 + 𝑈𝑆𝑖 (𝐷𝑖, 𝑉𝑖) ≤ 𝑄𝐶𝑎𝑝
𝑈𝑆𝑖 (𝐷𝑖, 𝑉𝑖) = 𝑉𝑖2 ⋅ 𝐷𝑖 + 𝐷𝑖𝑅𝑖2
(𝐷𝑖, 𝑉𝑖) ∈ Ω

(28)

𝑆𝑃2𝑘

𝜃𝑘 = min
𝑁∑
𝑖=1

(𝐹𝑖 + Π𝑘𝑖 )𝑋𝑖 + 𝑁∑
𝑖=1

𝑀∑
𝑗=1

((𝑅𝐶𝑖 + 𝜆𝑘𝑖 ) 𝑑𝑗 + 𝑇𝐶𝑖𝑗 + 𝜔𝑘𝑖 V𝑗) 𝑌𝑖𝑗
s.t : 𝑁∑

𝑖=1

𝑌𝑖𝑗 = 1 ∀𝑗 = 1, . . . ,𝑀
𝑌𝑖𝑗 ≤ 𝑋𝑖 ∀𝑖 = 1, . . . , 𝑁, ∀𝑗 = 1, . . . ,𝑀
𝑋𝑖, 𝑌𝑖𝑗 ∈ {0, 1} ∀𝑖 = 1, . . . , 𝑁, ∀𝑗 = 1, . . . ,𝑀

(29)

This decomposition consists of solving 𝑆𝑃1𝑖 to compute Π𝑖
and then solving 𝑆𝑃2 to calculate 𝜃, based on the computedΠ𝑖, as explained in Section 5.3.

5.3. Subproblem Solving

5.3.1. First Lagrangian Relaxation. For fixed values of the
Lagrangian multipliers 𝜆𝑘𝑖 , 𝜔𝑘𝑖 , 𝜓𝑘𝑖 , which are associated with
relaxing constraints (17), (18), and (13), respectively, we obtain
an infeasible solution of the primal problem in each iteration𝑘 of the algorithm. This solution generates a lower bound on
the optimal value of the primal problem.

First, we solve 𝑆𝑃1𝑖 to calculate the value of Π𝑖 of
subproblems (23), for which an exact procedure is found in
Miranda [36]. Once Π𝑖 is obtained, 𝑆𝑃2𝑖 is solved based on
the value of Π𝑖 according to Algorithm 1 (see Appendix A).

5.3.2. Second Lagrangian Relaxation. For fixed values of the
Lagrangian multipliers 𝜆𝑘𝑖 and 𝜔𝑘𝑖 , which are associated with
relaxing constraints (17) and (18), respectively, we obtain an
infeasible solution of the primal problem in each iteration 𝑘
of the algorithm. As in the first Lagrangian relaxation, this

solution corresponds to a lower bound on the optimal value of
the primal problem. First, we solve 𝑆𝑃1𝑖 to calculate the value
of Π𝑖 of subproblems (26), which is identical to subproblem
(23). OnceΠ𝑖 is obtained, 𝑆𝑃2 is solved based on the value ofΠ𝑖 through the solver CPLEX.

5.4. Lagrangian Heuristic and Subgradient Optimization. At
each iteration k of the Lagrangian algorithm, we use the cur-
rent lower bound solution to obtain a feasible solution, which
is an upper bound to the optimal value of the primal problem.
The Lagrangian heuristic considers three main procedures:
warehouse selection, greedy assignment of customers, and
K-OPT improvements. These three procedures are run for
different numbers of warehouses, from 1 to N, based on
the results and dual information of the subproblems 𝑆𝑃𝑖.
Namely, the complete heuristic is executed N times, and the
best solution is selected. Notice the high complexity of the
heuristic, especially, K-OPT improvement procedure, in con-
trast to the standard, simple Lagrangian heuristic observed
in the literature. In order to avoid a potential high time
consumption, only the K-OPT procedure is executed every
30 iterations of the algorithm. The three main procedures are
described as follows.
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for 𝑖 = 1 to 𝑁{
Compute Δ 𝑖 = 𝐹𝑖 + Π𝑖 + 𝑀∑

𝑗=1

min{0, (𝑅𝐶𝑖 + 𝜆𝑖)𝑑𝑗 + 𝑇𝐶𝑖𝑗 + 𝜔𝑖V𝑗 − 𝜓𝑗}
If Δ 𝑖 < 0 then𝑋𝑖 = 1, and
𝑌𝑖𝑗 = {{{

1 if (𝑅𝐶𝑖 + 𝜆𝑖)𝑑𝑗 + 𝑇𝐶𝑖𝑗 + 𝜔𝑖V𝑗 − 𝜓𝑗 < 0
0 if (𝑅𝐶𝑖 + 𝜆𝑖)𝑑𝑗 + 𝑇𝐶𝑖𝑗 + 𝜔𝑖V𝑗 − 𝜓𝑗 ≥ 0 ∀𝑗 = 1, ...,𝑀

𝐷𝑖, 𝑉𝑖 and 𝑄𝑖 retain the values computed from the resolution of subproblem (23)
If Δ 𝑖 ≥ 0 then𝑋𝑖 = 𝐷𝑖 = 𝑉𝑖 = 𝑄𝑖 = 0,𝑌𝑖𝑗 = 0, ∀𝑗 = 1, ...,𝑀}
Algorithm 1: Subproblem solving for first Lagrangian relaxation.

for 𝑖 = 1 to N{
Π𝑘𝑖 = 𝑂𝐶𝑖𝐷𝑘𝑖(𝑄𝑘𝑖 + 𝑈𝑆𝑖(𝐷𝑘𝑖 , 𝑉𝑘𝑖 )) + 𝐻𝐶𝑖

(𝑄𝑘𝑖 + 𝑈𝑆𝑖(𝐷𝑘𝑖 , 𝑉𝑘𝑖 ))2 + 𝐻𝐶𝑖(𝐷𝑘𝑖 𝑅𝑖 + 𝑍1−𝛼√𝐿𝑇𝑖 + 𝑅𝑖√𝑉𝑘𝑖 − 𝑈𝑆𝑖(𝐷𝑘𝑖 , 𝑉𝑘𝑖 )) − 𝜆𝑘𝑖𝐷𝑘𝑖 − 𝜔𝑘𝑖 𝑉𝑘𝑖
Δ𝑖 = 𝐹𝑖 + Π𝑘𝑖 + 𝑀∑

𝑗=1

min{0, (𝑅𝐶𝑖 + 𝜆𝑘𝑖 )𝑑𝑗 + 𝑇𝐶𝑖𝑗 + 𝜔𝑘𝑖 V𝑗 − 𝜓𝑘𝑗 }}
return (𝑃 sites in ascending order of Δ𝑖)

Algorithm 2: Warehouse selection algorithm.

5.4.1. Warehouse Selection. This procedure assumes that the
optimal solution 𝑥𝑘 = (𝑋𝑘, 𝑌𝑘, 𝐷𝑘, 𝑉𝑘, 𝑄𝑘) of the sub-
problems 𝑆𝑃𝑖 and the Lagrange multipliers (𝜆𝑘𝑖 , 𝜔𝑘𝑖 , 𝜓𝑘𝑖 ) are
known. For the warehouse selection, the optimal costs of
subproblems 𝑆𝑃𝑖 are taken as initial values.Then, the best 𝑃(≤𝑁) warehouses are chosen (see Algorithm 2 in Appendix A).

5.4.2. Greedy Assignment of Customers. Once the warehouses
are chosen, the customers are greedy assigned to the cho-
sen warehouses; i.e., each client is assigned to the nearest
warehouse, based on the transportation cost 𝑅𝐶𝑖 ⋅ 𝑑𝑗 + 𝑇𝐶𝑖𝑗,
respecting the constraint of ordering capacity and maximum
inventory. In order to satisfy these constraints, we calculate
three types of order quantities at each warehouse i. First
is 𝑄𝐸𝑂𝑄𝑖 , which is economic order quantity in absence of
capacity constraints. Second is 𝑄𝑖 , which is the available
inventory capacity once inventory associated with variances
are discounted, based on the inventory capacity constraint.
Third is𝑄𝑖 , which is the available order quantity once under-
shoot is subtracted, based on the order capacity constraint.
Then, the optimal order quantity 𝑄∗𝑖 is the minimum of the
three previous different values for 𝑄𝑖, as long as 𝑄∗𝑖 has a
nonnegative value.Otherwise, delete i from the potential site’s
pool.The heuristic is described according to Algorithm 3 (see
Appendix A).

5.4.3. K-OPT Improvements. Once a feasible solution is
obtained through the last two steps (i.e., 𝑥𝑘 = (𝑋𝑘, �̃�𝑘, 𝐷𝑘, �̃�𝑘,

𝑄𝑘)), two K-OPT improvements are run, 1-OPT and 2-OPT.
The former evaluates the reassignment of each customer
to the other installed warehouses, if capacity constraints
allow it; then, the best feasible interchange is chosen. If the
total cost decreases then the reassignment is permanent.
The latter takes pairs of clients in different warehouses and
swaps them if capacity constraints allow it. If the total cost
decreases the swap becomes permanent. In this algorithm,
the optimal value of the dual problem is obtained based on
dual maximization, which represents a lower bound to the
optimal value of the problem 𝑃. Thus, the difference between
this lower bound and the cost of the best solution obtained
through the heuristic previously described is an upper bound
to errors of the heuristic solutions.

The update of dual variables in each iteration k is based
on the subgradient method [37, 38]. This method employs
the slackness/violation vector associated with relaxed con-
straints. Furthermore, this method utilizes an upper bound
UB on the optimal value of the primal problem, which
is obtained by solving the Lagrangian heuristic proce-
dure described previously in this section. The procedure is
repeated until a standard convergence criterion is met.

6. Numerical Results and Discussion

In this section, we study the quality of the solutions by the
proposed heuristic procedure. Furthermore, we validate the
model ILM-SCC-PR and its heuristic solutions. We used the
instances of Miranda and Garrido [18, 19] as a benchmark
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for 𝑖 = 1 to N {
for 𝑗 = 1 to M {𝑑𝑘𝑖𝑗 = 𝑅𝐶𝐼𝑖 ⋅ 𝑑𝑗 + 𝑇𝐶𝐼𝑖,𝑗}}
for 𝑞 = 1 to N{
for 𝑖 = 1 to 𝑞{�̃�𝐼𝑖 = 1}
for 𝑗 = 1 to M{
for 𝑖 = 1 to N{�̃�𝐽𝑖𝑗,𝑗 = 1
for 𝑙 = 1 to N{𝐷𝑙 = 𝑚∑

𝑠=1

𝑑𝑠 ⋅ �̃�𝑙𝑠
𝑉𝑙 = 𝑚∑
𝑠=1

V𝑠 ⋅ �̃�𝑙𝑠}
𝑈𝑆𝐽𝑖𝑗 = 𝑉𝐽𝑖𝑗2 ⋅ 𝐷𝐽𝑖𝑗 + 𝐷𝐽𝑖𝑗𝑅𝐽𝑖𝑗2
𝑄𝐸𝑂𝑄𝐽𝑖𝑗 = √ (2 ⋅ 𝑂𝐶𝐽𝑖𝑗 ⋅ 𝐷𝐽𝑖𝑗)𝐻𝐶𝐽𝑖𝑗 − 𝑈𝑆𝐽𝑖𝑗
𝑄𝐽𝑖𝑗 = 𝐼𝐶𝑎𝑝 − 𝐷𝐽𝑖𝑗𝑅𝐽𝑖𝑗 − (𝑍1−𝛼√𝐿𝑇𝐽𝑖𝑗 + 𝑅𝐽𝑖𝑗 + 𝑍1−𝛽√𝐿𝑇𝐽𝑖𝑗)√𝑉𝐽𝑖𝑗𝑄𝐽𝑖𝑗 = 𝑄𝐶𝑎𝑝 − 𝑈𝑆𝐽𝑖𝑗𝑄∗𝐽𝑖𝑗 = min(𝑄𝐸𝑂𝑄𝐽𝑖𝑗 , 𝑄𝐽𝑖𝑗 , 𝑄𝐽𝑖𝑗)
if 𝑄∗𝐽𝑖𝑗 > 0 then
break 𝑖

else�̃�𝐽𝑖𝑗,𝑗 = 0, 𝑈𝑆𝐽𝑖𝑗 = 0, 𝑄∗𝐽𝑖𝑗 = 0
next 𝑖}}̃𝑥𝑘 = (�̃�𝑘, �̃�𝑘, 𝐷𝑘, 𝑉𝑘, 𝑄𝑘)𝑈𝐵𝑘 = 𝑓(𝑥𝑘)1 − 𝑂𝑃𝑇2 − 𝑂𝑃𝑇}

Algorithm 3: Greedy assignment of customers and local search algorithm.

for an ILP under continuous review with the assumptions
required for a periodic review problem.

We used an Intel Core i3 processor at 2.4 GHz with 6 GB
of RAM and Windows 7 to run the heuristic procedure. The
program was developed inMicrosoft Visual Studio 2010 C++
and the subproblems of Lagrangian relaxation were solved
in IBM CPLEX 12.5. The numerical experiments have 20
warehouses and 40 clients (840 binary variables). The main
aim of presenting these experiments is to show the quality
of the heuristic solutions in terms of their differences with
the dual optimal values. This provides lower bounds for the
optimal solution for the original problem. In addition, we test
the performance with two different Lagrangian relaxations,
as we explain previously in Sections 5.1 and 5.2, respectively.
The average execution time for the test examples of the first

and second Lagrangian relaxation was 42 and 102 seconds,
respectively.

The model and the heuristic approach were validated
through a sensitivity analysis of the following key parame-
ters: ordering capacity, demand variability, and fixed costs.
We considered two levels of order capacity: QCap = 600
and 900. Demand variances and warehouse fixed loca-
tion costs ranged over seven values from the base case:±0%, ±10%, ±20%, and ± 30% each. Two values of the
review period were considered: R=1, 3. A total of 2×7×7×2
= 196 instances were solved for each one of two Lagrangian
relaxations, which sum to 196×2 = 392 instances finally.

The cost parameters are expressed in a generic cost unit,
CU. Fixed costs F, ordering costs, OC, and lead times, LT, for
each warehouse are reported in Table 2. For holding costs,
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Table 1: Parameters for the Lagrangian relaxation procedure.

Parameter Value
Maximum number of iterations 5000
Number of iterations before
halving 𝛼 30

Initial value of 𝛼 2
Minimum value of 𝛼 0.0000001
Minimum LB-UB gap 0.001%
Initial value for Lagrangian
multipliers 0.0

Table 2: Parameters of warehouses or distribution centers, W.

W 1 2 3 4 5 6 7 8 9 10
F 103,062 81,691 104,051 103,724 89,875 124,375 101,713 87,989 106,199 98,629
OC 61,800 47,150 41,940 88,650 62,100 55,220 41,470 62,650 68,440 69,080
LT 3 2 2 4 2 2 2 2 3 3
W 11 12 13 14 15 16 17 18 19 20
F 103,648 93,505 76,507 93,668 83,391 100,396 104,592 114,521 123,498 91,817
OC 64,070 45,320 69,690 45,680 77,260 41,000 74,780 53,030 32,930 76,990
LT 3 2 3 2 3 2 3 2 1 3

Table 3: Demand parameters of customers.

Customer 1 2 3 4 5 6 7 8 9 10
Mean 73.81 68.86 70.24 64.07 69.52 69.96 76.01 61.74 63.92 74.26
Variance 1,249.06 979.75 1,112.21 955.50 1,132.31 1,152.86 1,380.28 837.35 946.12 1,192.01
Customer 11 12 13 14 15 16 17 18 19 20
Mean 73.50 67.58 69.02 70.62 63.26 75.95 66.70 66.53 68.30 72.43
Variance 1,304.16 1,129.90 1,188.83 1,166.77 900.02 1,378.81 958.43 1,026.32 1,029.22 1,153.60
Customer 21 22 23 24 25 26 27 28 29 30
Mean 57.65 82.92 57.99 65.32 61.99 77.96 63.03 75.06 60.79 64.73
Variance 737.09 1,565.53 776.18 1,035.71 908.62 1,427.99 922.58 1,402.98 931.67 999.49
Customer 31 32 33 34 35 36 37 38 39 40
Mean 69.28 72.99 71.01 72.01 81.32 72.55 73.1 65.24 52.74 69.88
Variance 1,053.06 1,104.93 1,146.79 1,170.89 1,439.62 1,334.44 1,314.54 1,022.56 783.50 1,215.62

HC, and transportation costs, RC, a value of 100 CU was
assumed. Also, ICap is equal to 1200. Z1−𝛼 and Z1−𝛽 were set
to be 1.64 (95% of service level).

The parameters for Lagrangian relaxation used for all
experiments are given inTable 1.Wedetermined the Lagrang-
ian procedure based on the maximum number of iterations
allowed, or the optimality gap, or the minimum value of𝛼 (the scale used in calculating the different step sizes for
updating each Lagrange multiplier), whichever happened
first. The optimality gap is defined as ((UB-LB)/LB) ×100.

The customer’s mean and variance are shown in Table 3.
Both the clients and potential warehouse sites were randomly
distributed over a square with 2000 km sides. Transportation
costs TC were assumed as 56 CU/km. For more details of TC
complete data, see Tables 14 and 15 in Appendix C.

The upper bounds of errors were between 0.5% and
2.5%, and 0.5% and 3.0% for first and second relaxation,

respectively, considering R=1, showing the quality of the
found solutions. The histogram for the upper bounds of
errors is shown in Figure 3. The average error obtained was
1.1% and 1.3% for first and second relaxation, correspondingly.

The upper bounds of errors were between 4.0% and
9.0%, and 5.0% and 9.0% for first and second relaxation,
respectively, considering R=3, showing a worst quality of
the found solutions comparatively with R=1 solutions. The
histogram for the upper bounds of errors is shown in Figure 4.
The average error obtained was 6.4% and 6.5% for first and
second relaxation, correspondingly.

Table 4 shows the solutions obtained considering both
values of ordering capacity (600 and 900), for variances
at baseline and R=1 for first and second relaxations. It
presents the installed warehouses (W), the served demands,
and variance of the served demand by each warehouse
(D and V, respectively). It also displays the optimal order
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Figure 3: Observed upper bounds for the solution errors in the 98 analyzed instances for first and second relaxation, R=1.
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Figure 4: Observed upper bounds for the solution errors in the 49 analyzed instances for first and second relaxation, R=3.

quantity in absence of capacity constraints (𝑄𝐸𝑂𝑄) and the
available inventory capacity once the inventory associated
with variances is discounted based on the inventory capacity
constraint (𝑄). It also shows the available order quantity
once undershoot is subtracted based on the order capacity
constraint (𝑄∗) and the order quantity given by the heuristic,𝑄∗. It can be noted that the order quantity given by the
heuristic never violates the constraints and in all cases is
the same as 𝑄,which means that the inventory capacity
constraints are active. Correspondingly, Table 5 presents the
same outcomes but now considering a period of R=3. In this
case, the order quantity additionally takes the same value of𝑄; it can also be equal to 𝑄𝐸𝑂𝑄, which means that neither
inventory nor order capacity constraints are active.

The details of the solutions of first and second relaxation
are presented in Tables 6 and 7, respectively, in which the
columns are as follows: Prob no.: problem number, FC: factor
of fixed cost sensitivity (i.e., 0.7 corresponds to a variation
-30%), FV: factor of variance sensitivity, DCs opened: the
additional DCs that are located compared to the baseline
instance, DCs closed: the additional DCs that are closed
compared to the baseline instance. No. of open DCs: total
number ofDCs that are open,Upper Bound: objective value of

the best feasible solution, Lower Bound: the best lower bound
found for optimal objective function, % Gap: percentage
gap between upper bound and lower bound solution, Lag
iter: total number of Lagrangian relaxation iterations, and
CPU time (s): the number of CPU seconds elapsed when the
algorithm terminates.

Note that upper bound values tend to increase with
respect to the increment of the fixed cost (FC). A simi-
lar behavior is observed for variation in demand variance
(FV). Both tendencies denote a reasonable response of the
Lagrangian heuristic since it is expected that system costs
increase with respect to both sets of parameters. On the
other hand, if we compare results in Table 6 for the first
relaxation and results in Table 7 for the second relaxation
increasing order capacity constraints a system cost reduction
is produced. Finally, when we compare results in Table 6 for
first relaxation and results in Table 7 for second relaxation, an
increment in the duration of the review period (R = 1 and R
= 3) produces worst solutions in terms of system cost and %
Gap. These results show the reasonability of the Lagrangian
heuristic, based on the tendencies of the objective function
whendifferent input parameters aremodified (seeTables 8–13
in Appendix B for more details).
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Table 4: Sensitivity analysis for the capacity constraints with variances at baseline and R=1.

First relaxation:QCap = 600, 900 Second relaxation: QCap = 600, 900
W D V 𝑄𝐸𝑂𝑄 𝑄 𝑄 𝑄∗ W D V 𝑄𝐸𝑂𝑄 𝑄 𝑄 𝑄∗
2 661.9 10,433.7 451.2 11.1 261.2 11.1 2 661.9 10,433.7 451.2 11.1 561.2 11.1
3 618.2 9,990.7 402.9 66.0 282.8 66.0 3 614.0 9,862.1 402.6 73.6 585.0 73.6
5 565.7 9,332.3 547.1 135.9 308.9 135.9 5 496.7 8,143.5 528.9 237.7 643.5 237.7
8 486.9 7,865.7 529.6 255.5 348.5 255.5 8 562.8 9,244.5 550.2 141.1 610.4 141.1
14 421.2 6,845.0 401.6 351.9 381.3 351.9 10 418.5 6,783.6 543.1 277.4 682.6 277.4

Table 5: Sensitivity analysis for the capacity constraints with variances at baseline and R=3.

First relaxation: QCap = 600, 900 Second relaxation: QCap = 600, 900
W D V 𝑄𝐸𝑂𝑄 𝑄 𝑄 𝑄∗ W D V 𝑄𝐸𝑂𝑄 𝑄 𝑄 𝑄∗
2 257.0 4,004.5 99.0 50.2 206.7 50.2 2 254.7 3,910.3 100.4 61.5 210.2 61.5
3 263.6 3,995.6 67.2 30.7 197.0 30.7 3 263.6 3,995.6 67.2 30.7 197.0 30.7
5 215.5 3,510.3 186.0 198.7 268.6 186.0 5 216.2 3,610.1 185.5 191.7 267.3 185.5
8 268.3 4,116.9 169.7 11.1 190.0 11.1 8 268.3 4,116.9 169.7 11.1 190.0 11.1
10 217.5 3,683.5 213.5 131.2 265.2 131.2 10 215.8 3,495.2 214.2 147.2 268.2 147.2
11 204.6 3,163.0 197.4 200.6 285.4 197.4 11 204.6 3,163.0 197.4 200.6 285.4 197.4
13 210.6 3,615.8 217.3 156.0 275.6 156.0 12 223.5 3,936.9 106.0 153.9 255.9 106.0
14 263.9 4,026.6 87.5 28.4 196.5 28.4 13 204.8 3,265.8 219.1 193.8 284.9 193.8
15 200.5 3,211.1 247.9 209.8 291.2 209.8 14 198.0 3,169.2 120.3 269.1 295.0 120.3
16 240.2 4,384.0 74.4 83.1 230.6 74.4 16 231.9 4,049.3 79.5 123.5 243.5 79.5
19 203.2 3,179.8 53.2 313.0 287.4 53.2 19 263.6 4,178.6 13.4 91.2 196.7 13.4
20 209.0 3,576.4 245.2 163.0 278.0 163.0 20 209.0 3,576.4 245.2 163.0 278.0 163.0

The upper bound to errors was 6.4% and 6.5% for first
and second Lagrangian relaxation for instances with R =
3, which are higher than instances with R = 1. This might
be explained by an increment in duality gaps instead of a
heuristic error. Formore details of complete results, see Tables
8–13 in Appendix B.

7. Conclusions and Managerial Insights

This research paper is focused on studying a simultaneous
model addressing inventory and location decisions, with
stochastic demands assuming a periodic review policy and
probabilistic constraints of inventory capacity. We determine
the location of warehouses from a strategic perspective while
taking into consideration several inventory concerns such as
costs and constraints. Note that the safety stock and order
quantity costs and decisions are also integrated.

Themodel is built on mathematical expressions for safety
stocks, probabilistic inventory capacity constraints, and aver-
age cyclic inventory costs. These expressions are considered
when on-hand inventory level is lower than reorder inventory
level after R periods. This produces an additional ordering
quantity called undershoot, which is a relevant issue widely
reviewed and researched in the inventory control field.

Furthermore, the fact that the Lagrangian relaxation
approach can be applied to solve the ILP with periodic review
and stochastic inventory capacity constraints is a significant
contribution to the field of study. It is important to mention
that a set of inequalities and a local search Lagrangian

heuristic are taken into account to provide effective solutions,
similar to some related previous studies.

It is shown that upper bounds of the Lagrangian relax-
ation approach increase when review periods are larger while
observing more stable behavior. This is based on a numerical
application of small real size instances. This result may be
explained because of an increment in duality gaps rather than
the heuristic error.

In terms of managerial insights, an integrated inventory
location model with a periodic review is suggested to be
implemented when the supply chain network topology is
analyzed, and the review period of inventory control deci-
sions is significant (2 or more days). Review periods involve
a prominent usage of storage space at warehouses or distri-
bution centers, which affects the strategic network topology.
Nevertheless, it is not enough to solely analyze benefits related
to inventory costs for periodic review versus continuous
review policies, or evaluating the variation in the review
period of the inventory control policy. As a consequence,
strategic network topology costs, such as facility location and
transportation costs, must be included in the analysis. Finally,
the solution approach and line of research are enhanced, as
this allows modeling of several significant issues in inventory
control, simultaneously with facility location issues, within
the scope of supply chain network design problems.

Further research is suggested in the analysis of different
Lagrangian relaxations that may lead to better dual lower
bounds and duality gaps. Issues such as different peri-
odic inventory control policies, a multicommodity scenario,
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demand backorders and backlogging features, and service
level optimization may be considered for future investiga-
tion. Additionally, we encourage the examination of other
Lagrangian heuristics, such as simple versions of Ant Colony
Optimization and GRASP, among other well-known heuris-
tics and metaheuristics. In terms of supply chain network
design issues, having in mind the present inventory location
modeling structure, different distribution strategies may be
studied simultaneously with inventory planning aspects (e.g.,
direct shipments and cross-docking).

Appendix

A. Algorithms

See Algorithms 1 and 2.

Let 𝐼 be the index set of the𝑁 smallest Δ𝑖
Let 𝐽 be the index set of smallest costs between
warehouses 𝑖 and customer 𝑗
𝑥∗: best feasible solution found (primal)

𝑈𝐵, 𝐿𝐵: best upper and lower bound found for opti-
mal objective function (primal)

𝑈𝐵𝑘: upper bound found at each iteration 𝑘 based on
Lagrangian heuristic

𝐿𝐵𝑘: optimal value or lower bound found at each
iteration 𝑘 for Lagrangian function (21)

𝑥𝑘: optimal solution of the relaxed subproblems(𝑆𝑃1𝑘𝑖 and 𝑆𝑃2𝑘𝑖 ) at each iteration 𝑘
𝑥𝑘: feasible heuristic solution found at each iteration𝑘 based on Lagrangian heuristic

See Algorithm 3.

B. Results for the First and
the Second Relaxation

See Tables 8, 9, 10, 11, 12, and 13.

C. Fixed Transportation Costs

See Tables 14 and 15.
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