
Abstract
The correlation between census population density and
Ikonos image texture was explored. The spatial unit for the
analysis was census blocks with homogenous land-use. Ikonos
image texture was described using three methods: the gray-
level co-occurrence matrix (GLCM), semi-variance, and spatial
metrics. Linear regression was conducted to explore the
correlation between image texture and population density. It
was found that although correlation exists, its degree varies
depending on the method used to describe image texture. The
highest correlation is given by the spatial metrics method.
This result suggests that the correlation between texture and
population density is not strong enough to predict or forecast
residential population. However, image texture does provide a
base to refine census-reported population distribution using
remote sensing. High-resolution satellite images therefore
have the potential to support “smart interpolation” programs
to estimate human population distribution in areas where
detailed information is not available.

Introduction
Knowledge of the size and spatial distribution of human
population in an urban area is essential for understanding
social, economic, and environmental issues. Traditionally,
census has been the primary source of information on
population distribution and demographic characteristics.
Due to the cost, frequency, and boundary designation
problems associated with census (Openshaw, 1984), the
utility of remote sensing for population estimation has been
continuously explored since the 1950s. Various types of
satellite imagery have been examined to study population
distribution, including Landsat MSS (Iisaka and Hegedus,
1982), TM and ETM (Forster, 1985; Li and Weng, 2005), SPOT
(Lo, 1995), and DMSP nighttime imagery (Dobson et al., 2000;
Sutton et al., 2001). The successes of these studies vary,
however one consensus reached is that for applications with
small geographic extent, a spatial resolution of 0.5 to 5 m is
necessary (Jensen and Cowen, 1999). Such a fine resolution
was rarely available with previous satellite images.

The advent of very high spatial resolution satellite
images such as Ikonos renewed the interest in urban remote
sensing including using remote sensing to estimate human
population count and its spatial distribution. It has been
suggested that an objective assessment of the current status
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and future potential of urban remote sensing is necessary
(Donnay et al., 2001). For urban population studies, Ikonos
provides urban specificities comparable to those derived
from low-altitude aerial photographs. The panchromatic
imagery of 1 m spatial resolution enables the counting of
individual dwelling units, while the multispectral imagery
of 4 m spatial resolution clearly reveals the differences
between residential neighborhoods. With the recognized
limitations of medium-resolution satellite sensors (e.g., MSS,
TM, and SPOT) and excitement about the new generation of
high spatial resolution images like Ikonos, an examination of
the utility of the new sensors is necessary.

This paper intends to provide a discussion of the
methodological challenges in conducting this line of
research and present an examination of the correlation
between Ikonos image texture and census population
density. Remote sensing has long been used to estimate
urban population and socio-economic parameters. Several
surrogates derivable from remotely sensed imagery have
been examined in the literature, such as the extent of an
urbanized area, the spectral reflectance value, and the
proportion of each land-use class. In this study, Ikonos
image texture will be examined as a correlate of population
density. The fundamental assumption is that neighborhoods
with similar housing characteristics tend to have similar
population density. Housing characteristics can be described
by the size of the houses, the greenness, and other associ-
ated conditions. The interaction among these factors forms
texture. Different housing conditions reveal different textures
in remotely sensed imagery; consequently, if a relationship
can be established between image texture and population
density, texture can be use to inform studies of population
count and its spatial distribution. Research in this paper
will help to answer the following questions: Is there correla-
tion between population density and Ikonos image texture?;
Is the correlation strong enough to estimate population
count?; Which method of texture description is most
correlated with population density?. Answers to these
questions will not only help to evaluate the utility of very
high-resolution images for socioeconomic applications but
also help to identify the challenges and future research
needs in urban remote sensing.

Remote Sensing and Studies of Human Population
Research using remote sensing to study human population
started in the 1950s and advanced in two interrelated
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directions. One direction is to use remote sensing to provide
accurate estimation of population count (e.g., Wellar, 1969;
Anderson and Anderson, 1973; Lo, 1995; Sutton et al., 1997;
Chen, 2002; Harvey, 2002), and the other is to use remote
sensing as ancillary information to refine census-reported
spatial distribution of population, i.e., the so-called dasy-
metric mapping with remote sensing (e.g., Donnay and
Unwin, 2001; Mennis, 2003). Although their specific aims
differ, both types of research are based on the assumption
that correlation exists between remote sensing surrogates
and population density. To establish the correlation, three
questions have to be answered: (a) What is the spatial unit
to be used?, (b) Which surrogates of remote sensing image
are correlated with population density?, and (c) If a regres-
sion model is established between the remote sensing
surrogate and population density, what form does the
regression take?

There are many answers to these questions in the
literature. Choices of spatial unit include land-use zone
(Anderson and Anderson, 1973; Donnay and Unwin, 2002;
Mennis, 2003), image pixel (Lo, 1995; Sutton et al., 1997),
and census-reporting unit (Chen, 2002). The selection of the
spatial unit determines the difficulty of obtaining training
samples and remote sensing surrogate. For example, if image
pixel is used, obtaining the corresponding ground popula-
tion can be quite challenging (Harvey, 2002). On the other
hand, if census reporting unit is used, it is easy to collect
the population information of the training samples, however,
the land-use class and texture of a census-reporting unit
may be heterogeneous, making the average digital number or
texture not directly appropriate to study the correlation.

Once the spatial unit is determined, a remote sensing
surrogate must be selected so as to examine its correlation
with population density. The most widely used surrogate is
categorical land-use information. The assumption behind
this method is that each land-use class has a characteristic
population density. By image interpretation, it is possible to
obtain the area of each land-use class and hence the corre-
sponding population count (e.g., Anderson and Anderson,
1973; Mennis, 2003). The problem with this approach is that
although the difference between land-use classes is recog-
nized, the differences within a land-use class are ignored,
Not all residential areas have the same population density,
as evidenced by the contrast between detached-housing and
multiple-unit housing. Even within a detached-housing area,
there is a difference between low-density, medium-density,
and high-density. To incorporate such considerations, one
can conduct a more detailed classification in residential area
and associated different population densities with different
residential categories (Donnay and Unwin, 2001). Although
this method improves the estimation, the fundamental
problem remains unsolved. Population density is a continu-
ous variable, yet land-cover and land-use class is a discrete
variable. To associate a land-use with a single population
density is equivalent to modeling a continuous variable with
a discrete variable and is bound to introduce errors unless
remedial work is conducted. Another problem with the
above method is that it fails to consider the impact of
location on population density. Empirical studies have
repeatedly shown that geographic location and neighborhood
have an impact on population density. For example, residen-
tial areas close to urban center and transportation systems
tend to have higher population density.

An alternative to the categorical land-use information is
image spectral data or texture (Lo, 1995; Sutton et al., 1997;
Chen, 2002). Because digital value and texture are continu-
ous, they are not subject to the problems associated with
using categorical land-use information. The challenge in this
method is to select an appropriate approach which can

describe zone-average reflectance or texture. Between the
two approaches, texture is believed to be more advantageous
for high-resolution images such as Ikonos. This is because
texture not only utilizes the spectral information but also
takes into account the spatial configuration of pixels. In the
real world, the arrangement of vegetation and dwelling
units, the uniformity of dwelling units, and the distance
between adjacent ones all contribute to explain the differ-
ences in population density.

This research examines the correlation between census
population density and image texture. Three methods to
describe image texture will be tested and compared. The
result will provide guidance to future research on using
high-resolution satellite image to improve population
estimation.

Methods
Homogenous Urban Patches (HUP)
The spatial unit of this study is homogenous urban patch
(HUP) as defined by Herold et al. (2002b). This concept is
based on the concept of photomorphic region widely used in
aerial photographic interpretation (Peplies, 1974). It has the
following characteristics:

1. An HUP has a homogenous texture which is visibly different
from that of the neighboring HUPs.

2. An HUP may have several land-cover types (e.g., built-up,
vegetation, etc.) within it, but has only one land-use (e.g.,
commercial). The built-up areas in a residential HUP are
usually similar in terms of size, density, and spatial
arrangement.

3. Where possible, HUP boundaries follow streets and other
relevant natural and anthropogenic features such that large
built-up patches remain contiguous for their delineation.

4. An HUP should be sufficiently large. Very small homogenous
areas are too small for urban land-use characterization.

The HUP concept is fundamental to subsequent examina-
tion of the relationship between image texture and popula-
tion density. Compared to other spatial units, such as a
quadratic filtering window (kernel) or pixel (Gong et al.,
1992) which are traditionally used in urban remote sensing,
an HUP has the advantage of allowing the characterization of
thematically defined, irregularly shaped areas. For raw
Ikonos imagery, the boundaries of HUPs may be obtained
using texture-based image segmentation which maximizes
between-patch textural differences while minimizing within-
patch differences. Since the focus of this study is the
correlation between population density and image texture,
the HUP boundaries were delineated by an experienced
image analyst through visual interpretation. Field checking
and peer evaluation confirmed that the boundaries of the
HUPs are highly accurate, which minimizes the propagation
of errors in HUP boundaries to further analysis. Figure 1
illustrates HUP boundaries. The land-use of each HUP is also
coded according to a modified Anderson III classification
scheme.

Study Area and Source Data
The study area of this research is coastal Santa Barbara
County, California (Figure 2). It is located 170 km northwest
of Los Angeles in the foothills of the California Coast Range.
The area is characterized by different types of land-use
including residential areas with different density and
socioeconomic structure, commercial and industrial districts,
and open spaces (e.g., farm land and wetland). In addition
to Ikonos image and census data, rich datasets are available
for this area, which significantly facilitates sampling, image
interpretation, and accuracy assessment.
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variance (Woodcock and Harward, 1992), and fractal dimen-
sionality (Lam, 1990). Commonly used methods include the
gray-level co-occurrence matrix (GLCM) (Haralick, 1973),
semi-variance (Lark, 1996), and wavelet analysis (Zhu and
Yang, 1998). These methods are typically applied with a
rectangular window or kernel. In this study, the spatial unit
for texture analysis is homogenous urban patch (HUP) whose
shape can be irregular and non–uniform. The gray-level co-
occurrence matrix and semi-variance are examined along
with a third approach using spatial metrics. Note that GLCM
and semi-variance work with gray-level pixel values whereas
spatial metrics are applied to classified land-cover maps
only. Below is the review of these three methods.

Gray-level Co-occurrence Matrix (GLCM)
GLCM tabulates the frequency of one gray tone appearing in a
specified spatial relationship with another gray tone within
the area under investigation (Baraldi and Parmiggiani, 1995).
Each element in GLCM is the estimated probability of going
from gray-level i to gray-level j given the displacement
vector which consists of a direction and distance. Detailed
discussion on GLCM calculation can be found in Haralick
et al. (1973). For this study, the GLCM analysis uses an
isotropic displacement vector. This is because the purpose
of texture analysis is to examine whether texture can be
used to estimate residential population density. The popula-
tion density of an HUP is determined by the number of
buildings and the population count in each building. As
long as these two numbers remain the same, whether the
buildings are lined up horizontally, vertically, or diagonally
should not affect the population density. Therefore, it is
reasonable to assume that the direction factor in the dis-
placement vector is isotropic. For the distance vector, since
little theoretical guidance to its selection exists, an empirical
experiment was conducted. Due to the intensive computa-
tional cost associated with GLCM, distance factors varying
from one to nine pixels were examined. For an isotropic
displacement vector with a distance of h, the frequency of
going from pixel i to pixel j is counted as follows: for each
pixel i in an HUP, find the square window of (2h � 1)
� (2h � 1) centered on the pixel. The boundary of this
window consists of 4 * (2h � 1) pixels. If any of the 8 h
pixels does not belong to this HUP, pixel i is then excluded
from GLCM calculation. Otherwise, for each gray-level j,
find the number of pixels with intensity j in the window
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Figure 1. HUP boundaries in black lines overlaid on an
Ikonos image. A color version is available at ASPRS
website, URL: www.asprs.org.

Figure 2. Map of the study area with land-use as the background (after Herold et al. (2003), used with
permission). A color version is available at ASPRS website, URL: www.asprs.org.

To examine the correlation between image texture and
population density, population data on block level from
Census 2000 and an Ikonos image were acquired. Errors and
positional inaccuracy of census data was corrected with the
use of parcel maps and building footprint maps which show
the shape and position of the buildings in each parcel. The
Ikonos imagery was processed by mosiacing seven individ-
ual multispectral Ikonos images acquired between March
and July 2001. The resulting mosaic covers the entire study
area. Since the images were acquired on different dates with
varying atmospheric and illumination conditions, geometric
and atmospheric corrections were conducted to create a
geometrically rectified and normalized image mosaic. Details
on the preprocessing of the Ikonos images can be found in
Herold et al. (2002a).

Texture Measurement
To examine the correlation between image texture and
population density, a method to describe the texture of
an HUP must be identified first. Many methods exist to
describe the texture of a remotely sensed image, for exam-
ple, the standard deviation method (Arai, 1993), the contrast
between neighboring pixels (Edwards et al., 1988), local
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boundary and update the (i,j) entry in GLCM. This process is
applied to every pixel in the HUP. The result is a GLCM
which is then normalized to obtain the normalized GLCM.
The normalized GLCM is further compressed into six texture
descriptors defined by Haralick (1973) and presented in
Table 1.

GLCM requires the specification of the lag distance.
Since no prior knowledge is available on the optimal lag
distance, an isotropic displacement vector ranging from one
to nine pixels was tested. Larger lag distance would result
in very sparse GLCM matrixes and were not examined. For
each HUP, the following GLCM-based texture descriptors are
available:

where Entropy1,...,9 denotes entropy1, entropy2,..., entropy9
which correspond to the entropy values calculated using
isotropic displacement vector of one to nine pixels respec-
tively. This notation applies to other variables also.

Texture Description Using Semi-variance
The pixel values within an HUP represent a regionalized
variable whose spatial variation can be described by semi-
variance (Issaks and Srivastava, 1989):

(1)

where h is the lag distance along the specified direction,
r̂ (h) is the semi-variance at lag h, zi and zi�h are the values
of a pair of pixels separated by a distance of h pixels, and
Nh is the number of such pairs in the study area. Semi-
variance can describe the spatial and directional dependence
of the variance of pixel values at characteristic scales, as
well as the spatial periodicity of this variation. It is therefore
considered as a useful tool to describe texture (Woodcock
et al., 1988; Lark, 1996).

Like GLCM, the calculation of semi-variance requires the
specification of a direction factor. This study examines
isotropic semi-variance only. Isotropic semi-variances of
each HUP were calculated using varying lag distances to
produce an experimental semi-variogram. Typically, semi-
variance rises with distance until a sill value is achieved.
The distance where the sill is reached is referred to as

r̂ (h) �
1

2Nh
a

i
(zi � zi�h)2

Variance1,p ,9, Homogeneity1,p ,9]
Ti � [Energy1,p ,9, Entropy1,p ,9, Contrast1,p , 9, Correlation1,p ,9,

range. Although it is possible to fit a theoretical semi-
variogram model to the semi-variances, it is not done in this
research for two reasons: (a) Accurate semi-variogram
modeling usually requires manual curve fitting. To use a
theoretical semi-variogram to describe the texture of an HUP,
manual fitting would have to be conducted on HUPs one by
one. Since there are more than 2000 HUPs in the study area,
this process is not feasible. (b) Not every semi-variance can
be easily fitted by a theoretical semi-variogram. For these
reasons, empirical semi-variances corresponding to lag
distances from 1 pixel to 20 pixels were calculated for each
HUP. These 20 semi-variances make up one vector which has
the form:

(2)

where is the semi-variance calculated when lag distance
is j pixels. This vector is used to describe the texture of a
HUP. The calculation of the semi-variances was completed
using UNIX-based GSLIB software (Deutsch and Journel, 1997).

Spatial Metrics
The goal of texture analysis in this study is to determine
whether correlation exists between the population density
and image texture of a residential HUP. Residential areas are
characterized by diverse materials such as asphalt, metal,
plastic, glass, shingles, water, vegetation, and bare soil.
Although the digital number values of these materials are
different, they can be grouped into a limited few categories
such as vegetation, or built-up area. Ridd (1995) proposed a
V-I-S model to categorize urban areas where V, I, and S stand
for vegetation, impervious surface, and soil, respectively. For
the purpose of studying population density in this research,
his classes were modified into three new categories: vegeta-
tion, built-up area, and others. To characterize the spatial
configuration of these materials, one could use their raw DN
values as in GLCM or semi-variance, or use the categorical
information as in the spatial metrics method.

Spatial metrics was developed in landscape ecology to
quantify the environmental patterns of a natural landscape.
Recently, it has been used to understand urban environ-
ments (Herold et al., 2003). Many landscape metrics exist
(McGarigal et al., 1995). Unlike GLCM and semi-variance
which uses the pixel values in a gray-level image, landscape
metrics uses the patches in a categorical map as the spatial
unit. In the context of this study, a patch is defined as a

ĝj

Ti � [ĝ1, ĝ2, p ,ĝ20]
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TABLE 1. GLCM-BASED TEXTURE DESCRIPTORS

Texture Descriptor Description

Measures texture uniformity, i.e., pixel pair repetitions. High energy occurs when 
the distribution of gray-level values is constant or period.

Highly correlated to energy. Measures the disorder of an image. Entropy is high 
when an image is not texturally uniform.

Contrast measures the difference between the highest and lowest values of a 
contiguous set of pixels. A low-contrast image features low spatial frequencies.

Measures the linear dependency in the image. High correlation values imply a 
linear relationship between the gray-levels of pixel pairs.

A measure of heterogeneity. Variance increases when the gray-level values differ 
from their mean.

Measures image homogeneity. Sensitive to the presence of near-diagonal elements
in a GLCM.

where Ng is the number of gray levels, g(i,j) is the entry (i,j) in the gray-level co-occurrence matrix and and .s
2 � a

Ng�1

i,j�0
(i�u)2 g(i,j)u � a

Ng�1

i,j�0
i . g(i,j)

Homogeneity (Homo) � a
Ng�1

i,j�0
 

1

1 � (i�j)2 g(i,j)

Variance (Var) � a
Ng�1

i,j�0
(i�u)2g(i,j)

Correlation (Corr) � a
Ng�1

i,j�0
(i�u)(j�u)g(i,j)>s2

Contrast � a
Ng�1

i,j�0
(i�j)2 g(i,j)

Entropy � a
Ng�1

i,j�0
g2(i,j)ln g(i,j)

Energy � a
Ng�1

i,j�0
g2(i,j)
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group of adjacent pixels classified into the same land-cover
category. For example, a house occupying 20 � 20 meters
on the ground corresponds to 5 � 5 pixels in the multispec-
tral Ikonos image. Although these 5 � 5 pixels may have
different DN values, they are all classified as built-up, and
therefore form a single patch. Similarly, a contiguous
vegetated area, such as a lawn, also forms a patch. There
can be many patches (built-up, vegetation, and others) in an
HUP. Their spatial configuration determines the texture of
the HUP. To describe the characteristics of the texture of an
HUP comprehensively, the following aspects were considered
when selecting spatial metrics:

1. Composition describes the variety and abundance of patch
types within an HUP without considering their spatial
placement. This type of landscape metric is useful in
differentiating residential types since the percentage of built-
up area or vegetation in a HUP has a correlation with the
population density. For example, a low-density residential
area is usually characterized by a higher percentage of trees
and grasses, while a high-density residential area has more
built-up patches within it. The principal measures of
composition in this study are Percentage of Landscape
(PLAND) which measures the proportional abundance of built-
up area and vegetation in an HUP, and Shannon’s Diversity
Index (SHDI) which is a composite measure of the number of
patches present and the relative dominance of a patch.

2. Spatial configuration describes the spatial arrangement,
position, or orientation of patches within an HUP. The
principal aspects of spatial configuration are patch density,
isolation/proximity, connectivity, and contagion. Patch
density (PD) measures the number of patches per unit area. It
can be used to compare the degree of fragmentation among
HUPs. For example, houses in high-density, single-unit
housing areas are smaller and are separated by vegetation
and impervious surfaces, resulting in a higher degree of
fragmentation. Isolation/proximity refers to the tendency for
patches to be relatively isolated in space from other patches
of the same or similar class. This study concerns the
isolation of built-up patches only, and uses the Euclidean
Nearest Neighbor Distance (ENN) to describe it. Both the
Mean ENN (ENN_MN) and the Standard Deviation of ENN
(ENN_SD) are calculated. ENN_MN measures the average dis-
tance between two adjacent houses while ENN_SD indicates
the regularity of ENN. In a residential areas where houses
display a high degree of orderliness, ENN_SD is expected
to be low. Cohesion (COHESION) is computed from the infor-
mation contained in patch area and perimeter. Contagion
refers to the tendency of patch types to be spatially aggre-
gated, that is, to occur in large, aggregated or “contagious”
distributions. Contagion ignores patches per se and measures
the extent to which cells of similar class are aggregated. The
contagion index (CONTAG) used in this study is based on the
probability of finding a cell of type i next to a cell of type j.
This index increases in value as a landscape is dominated
by a few large, contiguous patches, and decreases in value
with increasing subdivision and interspersion of patch types.
The index summarizes the aggregation of all classes and
thereby provides a measure of overall “clumpiness” of the
landscape. The spatial metrics used in this study are
summarized in Table 2.

In this study, the landscape metrics-based texture
analysis requires categorical land-cover information as the
input. A land-cover map consisting of three categories: built-
up area (built), vegetation (veg), and others were obtained
using the method discussed in the next section. The texture
of each HUP is thus described by the following vector:

Texture is an intrinsically complex feature. Although
three texture- measuring methods are proposed, each has some

ENN_SDbuilt,COHESION,CONTAG,SHDI]
Ti � [PLANDbuilt,PLANDveg,PDbuilt,PDveg,ENN_MNbuilt,

shortcomings and may not capture all aspects. Nevertheless,
they serve as a good starting point for exploratory analyses.

Data Preparation
Since GLCM and semi-variance analysis can only be con-
ducted on gray-level images, a gray-level image must be
created first. Two such images were prepared. The first uses
the near infrared band (i.e., Band 4) of the Ikonos image.
This band was selected because a standardized principal
component analysis showed that the near infrared band was
the most significant single band and accounted for 74.3
percent of the total variances in the multi-spectral image.
The other gray-level image was based on the normalized
difference vegetation index (NDVI) value of each pixel. NDVI
is scaled to become an integer between 0 and 255. NDVI is
very efficient to differentiate built-up areas from vegetation.
Since population density correlates with the density of built-
up area and vegetation, NDVI is used in this research. In the
following sections, these two images will be referred to as
the NIR image and the NDVI image, respectively.

The spatial metrics method runs on categorical maps
only. The categorical map used in this study is the land-
cover map obtained by applying object-oriented image
analysis on the multi-spectral Ikonos imagery using eCogni-
tion®. The map has three classes: built-up, vegetation, and
the others. Details on the pre-processing and image classifi-
cation of Ikonos imagery can be found in (Herold et al.,
2002). By overlaying the land-cover map with HUP bound-
aries, it is possible to determine the patches within each
HUP. The overall accuracy and Kappa coefficient of the
land-cover classification is 82.4 percent and 71.4 percent,
respectively.

As defined previously, each HUP may contain several
land-cover patches, but has only one land-use. While
delineating the HUP boundaries, the land-use of each HUP
is also determined according to a modified Anderson III
classification scheme. Residential areas were classified into
low-density single-unit housing, medium density single-unit
housing, high density single-unit housing, multiple-unit
housing, and commercial-residential mixed land-use. Because
the image analyst is very familiar with the study area, both
the HUP boundaries and the land-use of each HUP are very
accurate and serve as the reference for accuracy assessment.
Figure 3 provides an illustration of the Ikonos composite,
land-cover classification, and reference data showing the
footprint of buildings and roads.

Training Samples
To examine the correlation between image texture and
population density, some training samples must be col-
lected. Image texture can be calculated using the three
texture methods aforementioned. However, obtaining the
population information for a selected spatial unit has been a
challenge for some studies (Harvey, 2002). If HUP is used as
the spatial unit, the corresponding population information
is hard to determine since few HUPs have boundaries that
coincide perfectly with that of census-reporting units.
Conversely, although the population of each census unit is
known, many of them have multiple land-uses, making the
texture not uniform. Texture calculation on these units does
not seem reasonable. Because the census population data is
on block level, the final spatial unit utilized was those
census blocks that fall completely into a single HUP. These
census blocks are suitable as training data because their
textures and population densities are known. Moreover,
because HUP is defined as a spatial unit with homogenous
image texture, a subset of an HUP should have the same
image texture as the HUP. This suggests that the image
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texture of a census block is similar to that of the HUP it falls
in. On the other hand, the assumption behind using image
texture to assist population estimation is that areas with
similar image texture have similar population density. Since
the census blocks have the same texture as the HUP it falls
in, the population density of the HUP is similar to that of the
census block. Therefore, the correlation between texture and
population density on these training blocks can be used to
infer the correlation on HUP level. There were 1,578 blocks
used as training samples. Each of these blocks is located

within a single HUP and has residential land-use. They
display varying textures on Ikonos image and the land-cover
map. Their populations were obtained from the census, and
their textures were calculated using the three methods
discussed previously.

Results and Discussion
Regression analysis was performed on the 1,578 training
samples. The dependant variable was the average population
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TABLE 2. DESCRIPTION OF SPATIAL METRICS

Spatial Metrics Description

PLAND – percentage of landscape PLAND quantifies the proportional
abundance of each patch type in the
landscape. For this research, it is
used to describe the percentage of
buildings, vegetation, and other land-cover 

Pk � proportion of the landscape occupied by land-use class k. types in a land-use polygon.
akl � area (m2) of patch kl, i.e. patch l with land-use k.
A � total landscape area (m2)

PD – patch density PD describes the number of patches
on a per unit area basis that facilitates
comparisons among land-use

N � total number of patches in the landscape polygons of varying size. The higher
A � total landscape area (m2) the PD, the more fragmented the

land-use polygon. High density
single-unit housing is expected to
have the highest PD value, while
forest/rangeland may have the lowest.

ENN – Euclidean Nearest-Neighbor Distance Equals the distance (m) to the
ENN � hkl nearest neighboring patch of the
hkl � distance (m) from patch kl to the nearest same type, based on shortest edge-to-edge
neighboring patch of the same class k, based distance. ENN is a simple measure 
on patch edge-to-edge distance, computed of isolation. For buildings, ENN can help
from cell center to cell center. to describe whether the houses are spaced
ENN-MN: Euclidean mean nearest neighbor distance regularly. High density single-unit housing
ENN-SD: Euclidean nearest neighbor distance standard deviation display highest orderliness and close

to each other. Therefore, its ENN is expected
to be small and has low standard deviation.

Patch cohesion index measures the physical
connectedness of the corresponding patch
type. Cohesion approaches 0 as the proportion 
of the landscape comprised of the focal class
decreases and becomes increasingly subdivided

pkl* � Perimeter of patch kl in terms of number of cell surfaces and less physically connected. Cohesion
akl* � area of patch kl in terms of number of cells increases monotonically as the proportion
Z � total number of cells in the landscape of the landscape comprised of the focal class

increases.

CONTAG – Contagion Contagion refers to the tendency of patch types
to be spatially aggregated; that is, to occur in
large, aggregated or “contagious” distributions.
Contagion is an aspect of landscape texture.
Contagion approaches 0 when the patch types
are maximally disaggregated (i.e., every cell is a
different patch type) and interspersed (equal
proportions of all pairwise adjacencies). Contagion
equals to 100 when all patch types are maximally

K � the number of land-use classes aggregated, i.e., when the landscape consists of
gkn � number of adjacencies between pixels of patch types k and n single patch.
Pk � proportion of landscape occupied by patch type k

SHDI – Shannon’s Diversity Index SHDI equals to 0 when the landscape contains only
1 patch (i.e., no diversity). SHDI increases as the
number of different patch types (i.e., patch

Pk � proportion of the landscape occupied by land-use i richness, PR) increases and/or the proportional
distribution of area among patch types become
more equitable.

SHDI � �a
k

(pk* lnPk)

CONTAG � F1 �

a
K

k�1
a
K

n�1 £ (Pk) £
gkn

a
m

n�1
gkn
§ § # [ln (Pk) £

gkn

a
m

n�1
gkn
§

2 ln(K)
V (100)

Cohesion � D1 �

a
j

pkl*

a
l

pkl* 1akl*
T � c1 �

11z
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� (100)

PD �
N
A

 (10,000)(100)

PLAND � Pk �
a

l
 akl

A
 (100)
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density of each census block. The explanatory variables are
texture descriptors. The three methods to measure texture
(GLCM, semi-variances, and spatial metrics) were examined.
Since in each texture method there are several texture
descriptors which may not contribute equally to explain the
variation in population density, stepwise regression was
conducted in order to retain only the significant variables in
the final regression model.

As an exploratory data analysis, the simplest linear
regression model between population density and texture
descriptors is examined:

(3)

where pi is the population density of a training sample, Tij
is texture descriptor j for sample i, n is the number of
explanatory variables for indicators; and �i are parameters to

pi � b0 � a
n

j�1
bjTij � �i

be estimated from the data. This form was reported by Chen
(2002). However, the training data in this case study does
not seem to support this model. In fact, few texture descrip-
tors show a direct linear relationship with population
density. Instead, it is the logarithmic transformation of
population density which demonstrates a much stronger
linear correlation with texture. The model was therefore
modified to:

(4)

The logarithmic transformation has been reported by several
other researchers, including Anderson and Anderson (1973),
Sutton et al. (2001), Harvey (2002). The results of this study
also seem to also support such a relationship.

To compare the correlation, regression coefficient (R2)
is used. Although there are imperfections and cautions
associated with this measurement (Harvey, 2002), this
measurement is popularly used in the literature. For the
purpose of this research whose goal is to examine and
compare the correlation between image texture and popula-
tion density, R2 is considered appropriate, but used with
caution.

GLCM-based Regression
In GLCM-based analysis, the texture of each HUP is described
using a vector containing six descriptors, each of which is
calculated using lag distance from one to nine pixels. Each
descriptor describes a different aspect of image texture; it is
thus interesting to see which texture descriptor is mostly
correlated with population density. The varying lag dis-
tances provide an opportunity to examine the impact of
scale. Together, GLCM-based analysis will identify which
texture descriptor at what scale is most significantly corre-
lated with population density. On the basis of this study, a
stepwise regression using all texture descriptors with all lag
distances was conducted to obtain the best “fitting” model
of GLCM. This model was subsequently compared with that
obtained from semi-variances and spatial metrics based
analysis.

The analysis was conducted on both NIR and NDVI
images. The first set of experiments was conducted using
each single GLCM texture descriptor. The correlation coeffi-
cients are listed in Table 3 where entropy1,2 denotes that
there are two independent variables, entropy1 and entropy2,
which correspond to the entropy values calculated using
isotropic displacement vector of one and two pixels, respec-
tively. This notation applies to other variables also.

For the same texture descriptors, NDVI consistently
demonstrates higher correlation than NIR as measured by R2.
Energy and variance did not seem to correlate well with
population density, yielding an R2 of nearly 0. In contrast,
correlation and dissimilarity demonstrate higher correlation

ln pi � b0 � a
n

j�1
bjTij � �i
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Figure 3. Examples of spatial land-cover configurations
for major urban land-use categories shown as an Ikonos
false color composite, an Ikonos classification result
with buildings in red and vegetation in green. The
digital vector building/roads data is included here to
provide a ground reference of built-up area. (Modified
after Herold et al., 2003) A color version is available
at ASPRS website, URL: www.asprs.org.

TABLE 3. CORRELATION BETWEEN POPULATION DENSITY AND GLCM-BASED

TEXTURE DESCRIPTORS

R2

Texture Descriptor NIR NDVI

entropy1,2 0.13 0.29
energy1,2 0.03 0.16
contrast1,2 0.02 0.24
correlation1,2 0.06 0.29
homogeneity1,2,3,4 0.02 0.19
dissimilarity1,2 0.01 0.28
variance1,2,3,4 0.01 0.02
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with population density (R2 � 0.28 � 0.29) when the NDVI
image is used.

Once the individual texture descriptors are examined,
they are combined to run a new iteration of regression
analysis, i.e., using entropy1,2, energy1,2, contrast1,2, correla-
tion1,2, homogeneity1,2,3,4, and dissimilarity1,2; the R2 was
raised to 0.45. The use of more displacement distances or
texture measurements did not result in significant improve-
ment in R2 value. Therefore, an R2 of 0.45 was considered as
the highest correlation between image texture and popula-
tion density.

Semi-variogram-based Analysis
For the semi-variogram method, semi-variances correspon-
ding to lag distance between 1 to 20 pixels were examined
on NDVI and NIR images. The R2 obtained did not differ
between the two images; both were 0.20. Including more
semi-variance values calculated from more lag distances did
not improve the R2 significantly.

Spatial Metrics-based Analysis
Although nine spatial metrics were examined in land-use
classification, only three of them showed significant correla-
tion: percentage of built-up area, percentage of vegetation in
the area, and the patch density of built-up area. The linear
correlation has the following form:

(5)

where d is the population density (people/km2), p1 is the
percentage of built-up area (PLAND1), p2 is the percentage of
vegetation (PLAND2), and p3 is the patch density of built-up
area (PD1).

The result of this analysis is interesting in the sense that
the simple measurement of built-up and vegetation percent-
age together with patch density can explain a significant
amount of variances in population density. Other landscape
metrics, such as Euclidean distance and contagion, did not
contribute as significantly as expected. The three straightfor-
ward descriptors appear to have much powerful explanatory
power than the others.

The residuals of the linear regression are plotted in
Figure 4a. A plot between texture-estimated population
density and that of ground reference is shown in Figure 4b.
It can be seen that the range of the population is quite
wide, and there is no distinct threshold from low density
to high density. The R2 obtained is 0.55, which is signifi-
cantly higher than that from the GLCM and the semi-
variances method. This result suggests two things. One
is that there is indeed some correlation between image
texture and the natural logarithm of population density,
although the correlation is not high enough to make
reliable estimates of population. Moreover, the estimated

ln (d) � 8.819 � 1.772p1 � 2.612p2 � 0.0632p3, R
2 � 0.55

population density is in logarithmic format, and exponen-
tial operations must be applied to obtain population
density. During the process, small errors will be exponen-
tialized, and thereby amplified. On the other hand, imper-
fect correlation indicates that significant residuals exist
after the regression analysis. For studies on remote sensing
surrogates such as texture or land-use category to improve
census-reported population distribution, simple regression-
based interpolation may not be sufficient. Residual model-
ing may be necessary especially if the total population
count is to be preserved.

Summary
This study examined the correlation between image texture
and residential population density. Homogenous urban
patch (HUP) was used as the spatial unit for analysis. Three
methods to describe image texture were examined: gray-level
co-occurrence matrix (GLCM), semi-variances, and spatial
metrics. Each method was examined using a various texture
descriptors and lag distances, where appropriate. In all
examinations, it was found that the natural logarithm of
population density was linearly correlated with texture
measurements. Among the three texture analysis methods,
spatial metrics yielded the highest regression coefficient
with population density. Three spatial metrics were found
to be particularly useful: the percentages of built-up and
vegetation in an area, and the patch density of built-up area.
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TABLE 4. CORRELATION BETWEEN POPULATION DENSITY AND DIFFERENT

TEXTURE DESCRIPTORS

Independent Variables R2

GLCM NIR entropy1,2, energy1,2, contrast1,2, 
correlation1,2, homogeneity1,2,3,4, 
dissimilarity1,2, variance1,2,3,4 0.35

NDVI entropy1,2, energy1,2, contrast1,2,
correlation1,2, homogeneity1,2,3,4, 
dissimilarity1,2, variance1,2,3,4 0.45

Semi-variance NIR vari, i � 1, . . . ,20; semi-variances 
with lags from 1 pixels to 20 pixels 0.20

NDVI vari, i � 1, . . . ,20; semi-variances 
with lags from 1 pixels to 20 pixels 0.20

Figure 4. The correlation between spatial
metrics and population density: (a) the
comparison between texture-estimated
population density and ground reference, and
(b) plot of the residual of the regression.
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The highest regression coefficient R2 obtained was around
0.55. The significant residuals left from the linear regression
analysis suggest two points: (a) To estimate population
count through statistical regression using Ikonos imagery,
texture alone is unlikely to be sufficient, and other interpre-
tation keys or methods must be explored to achieve satisfac-
tory accuracy; and (b) The correlation between texture and
population density provides a basis to improve census
estimation on the spatial distribution of population. The
problem due to mixed land-use in a reporting unit can
be potentially alleviated. However, residual modeling is
necessary for accurate disaggregation, especially if the total
population count is to be preserved. Few studies on popula-
tion interpolation using remote sensing have discussed this
point. Instead, the majority work focused on the correlation
between remote sensing image feature and population
density. Research on residual modeling and accuracy
assessment are yet to be conducted.

The arrival of the new generation of high-resolution
satellite imagery (e.g., Ikonos) has opened up the opportunity
for detailed mapping and analysis of spatial characteristics
within the urban environment. However, new methods are
yet to be developed to best utilize this new opportunity.
Many previous studies have examined the feasibility of using
remote sensing to predict population or assist population
interpolation. This research shows that remote sensing
images can indeed help to estimate population density.
However, the correlation may not be strong enough for
empirical applications. In using remote sensing surrogates,
the selection of image and method can all affect the final
result. GLCM and semi-variances which have been used
widely in the past on medium-resolution images may not be
the best method to measure image texture for high-resolution
satellite images. In contrast, spatial metrics method seems
to be much more promising. However, the spatial metrics
method requires information on HUP boundaries which is yet
another challenge for the image interpretation community. In
addition, texture alone does not seem to be powerful enough
for this analysis. Shape, pattern, and association can be
included in future studies. For high-resolution satellite
images such as Ikonos, these factors are intuitively very
important. Detailed analysis is yet to be conducted to
examine quantitatively the utility of these elements.
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