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The paper contributes to current knowledge of climate change impacts on Indian agriculture
by accounting for spatial features that may influence the climate sensitivity of agriculture.
Using panel data over a 20-year period and on 271 districts, this study estimates the impact of
climate change on farm level net revenue in India. The key findings reveal that there is
a significant positive spatial autocorrelation and that accounting for this can improve the
accuracy of climate impact studies. Furthermore, the paper argues that better dissemination
of knowledge among farmers through both market forces and local leadership will help
popularize effective adaptation strategies to address climate change impacts.
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Introduction

Over the past two decades, the debate on global

climate change has moved from scientific circles

to policy circles with nation-states more serious

now than before in exploring a range of response

strategies to deal with this complex phenomenon.

The Intergovernmental Panel on Climate Change

(IPCC) in its fourth assessment report observed

that, ‘‘the warming of the climate system is now

unequivocal’’ (Solomon et al., 2007). Policy re-

sponses to climate change include mitigation of

greenhouse gases (GHGs) that contribute to the

expected changes in the earth’s climate and adap-

tation to the potential impacts caused by the chang-

ing climate. Though GHG mitigation policies have

dominated overall climate policy so far, adaptation

strategies are now coming to the fore in order to

formulate a more comprehensive policy response to

climate change.

One of the crucial inputs needed for policy for-

mulation on mitigation and adaptation is informa-

tion on the potential impacts of climate change on

various climate-sensitive sectors. Impacts on agri-

culture due to climate change have received consid-

erable attention in India as they are closely linked to

the food security and poverty status of a majority of

the population. The studies have used two basic

methods to estimate the economic impact of climate

change on agriculture1: (i) an agronomic–economic

approach (also referred to as the crop modeling ap-

proach and the production function approach) that

focuses on the structural modelling of crop and far-

mer responses, combining the agronomic response
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of plants with the economic/management decisions

of farmers. Among the studies that have followed

this approach are Rosenzweig and Parry (1994) and

Kumar and Parikh (2001a); (ii) a spatial analogue

approach (referred as the Ricardian approach) that

exploits observed differences in agricultural pro-

duction and climate among different regions to es-

timate a climate response function. Among the

studies that have used this approach are Mendelsohn

et al. (1994), Kumar and Parikh (2001b), Seo et al.

(2005) and Sanghi and Mendelsohn (2008).

The Ricardian approach has received widespread

attention and criticism due to its elegance and the

strong assumptions it makes. Several studies in In-

dia have followed this approach in the past to assess

the climate sensitivity of Indian agriculture (Kumar

and Parikh, 2001b; Mendelsohn et al., 2001; Sanghi

and Mendelsohn, 2008). This paper contributes to

existing knowledge on this field in India by ad-

dressing the importance of accounting for spatial

features in the assessment of climate sensitivity.

In conventional Ricardian studies, the units of anal-

ysis (say, districts) are implicitly assumed to be

perfectly substitutable across space. However, in

reality, the values of variables (such as crop output

and inputs) in districts are defined not only by local

conditions but also by the conditions in the neigh-

bouring districts. This is what we refer to in this

study as spatial autocorrelation of the dependent

variable. Alternatively, the spatial distribution of ag-

ricultural land within and across districts could affect

the error term structure. Ignoring the spatial correla-

tion of error terms can lead to an under-estimation of

the true variance–covariance matrix and hence to an

over-estimation of the t-statistic. We refer to it in

this study as the spatial autocorrelation of error terms.

The study specifically assesses the evidence for spa-

tial autocorrelation of variables (and errors) and

attempts to correct for the same. The paper uses

spatial panel data analysis in order to estimate the

climate response function under various spatial

econometric specifications and uses the estimated

climate coefficients to predict the impacts due to

climate change on Indian agriculture.

The rest of the paper adopts the following struc-

ture: the next section provides a brief review of the

literature on the Ricardian approach and climate

change impact studies on Indian agriculture. The

third section explains the model structure and data

used. The fourth section presents results and dis-

cusses the distributional issues of climate change

impacts on Indian agriculture. The last section dis-

cusses the policy implications of the findings of this

research.

Climate change and agriculture

Climate change projections for India for the 2050s

suggest an increase in temperature of 2–4�C for the

region south of 25�N and by more than 4�C for the

northern region. While there is likely to be little

change in the average amount of monsoon rainfall,

climatologists expect the number of rainfall days to

decrease over a major part of the country. The ex-

pected changes in climate, especially rainfall, are

also marked by significant regional variation, with

the western and central parts witnessing a greater

decrease in rainfall days compared to the other parts

of the country. Climatologists have also projected

an increase in the intensity and frequency of ex-

treme events such as droughts, floods and cyclones

(NATCOM, 2004).

Mall et al. (2006) provide an excellent review of

the climate change impact studies on Indian agri-

culture mainly from a physical impacts point of

view. The available evidence shows a significant

drop in the yields of important cereal crops like rice

and wheat under the changed climate conditions.

However, Mall et al. (2006) indicate that the studies

on the biophysical impacts on some important crops

like sugarcane, cotton and sunflower are not ade-

quate.

As mentioned above, the economic impacts of

climate change are assessed either through the

agronomic–economic approach or through the

Ricardian approach. The first approach introduces

the physical impacts (in the form of yield changes

and/or area changes estimated through crop simu-

lation models) into an economic model exoge-

nously. In the Indian context, Kumar and Parikh

(2001a) have estimated the macro level impacts of

climate change using such an approach. They show
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that under doubled carbon dioxide concentration

levels in the latter half of the 21st century, the gross

domestic product would decline by 1.4–3 percent-

age points under various climate change scenarios,

with adverse poverty effects. While this approach

can account for the so-called carbon fertilization ef-

fects,2 one of the major limitations is its treatment

of adaptation. Since the physical impacts of agricul-

ture are to be re-estimated under each adaptation

strategy, the researchers can analyze only a limited

number of strategies. It must be noted, however, that

this approach can easily incorporate other adapta-

tion strategies that are triggered by market signals.

In the Ricardian approach, Mendelsohn et al.
(1994) have attempted to link land values to climate

through reduced-form econometric models using

cross-sectional evidence. Since this approach is

based on the observed evidence of farmer behav-

iour, it could in principle include all adaptation

possibilities. In fact, this approach treats farmers

as though they have ‘perfect foresight’ and hence

are better placed to implement all adaptation op-

tions. One of the main concerns of this approach

is that it may confound climate with other unob-

served factors. Further, the constant relative prices

assumption used in this approach could bias the

estimates (see Cline, 1996; Darwin, 1999; Quiggin

and Horowitz, 1999 for a critique of this approach).

In the case of India, Kumar and Parikh (2001b)

have used a variant of the Ricardian approach and

showed that a 2�C temperature rise and a 7% in-

crease in rainfall would lead to nearly 8.4% loss in

farm level net revenue. The regional differences are

significant with northern and central Indian districts

along with the coastal districts bearing a relatively

large impact. More recently, Sanghi andMendelsohn

(2008) also estimated similar impacts due to climate

change on Indian agriculture. As crops are more

sensitive to temperature changes (Lobell and Burke,

2008), in all these studies the large negative effects

of temperature increase outweigh slight positive

effects due to rainfall increase.

The Ricardian model specification assumes that

all heterogeneity across cross-sectional units is con-

trolled for by the observed explanatory variables

including the climate variables. Thus, it is very im-

portant that the model specification is accurate so

that climate coefficients capture only the influence

of climate. Further, since there is scope for learning

across spatial units through communication and in-

formation diffusion, it is important to account for

spatial correlation in the Ricardian analysis using

cross-sectional data. It is this latter issue that the

present study focuses on. Depending on how the

spatial correlation would enter into the Ricardian

analysis using cross-sectional data, some recent stud-

ies assessing climate change impacts on agriculture

in the USA have either assumed that the dependent

variable is spatially lagged (Polsky, 2004) or the er-

ror term is spatially correlated (Schlenker et al.,

2006). Either way, these studies have argued for

the need to account for spatial correlation in the

Ricardian analysis. The present study aims to

bridge the knowledge gap in the Indian context

by attempting to get accurate estimates on the cli-

mate sensitivity of Indian agriculture through spe-

cifically accounting for spatial correlation of the

cross-sectional units in the Ricardian analysis.

Model specification and data

While the original Ricardian approach developed

by Mendelsohn et al. (1994) estimated the relation-

ship between land values and climate due to non-

existent and/or absence of well-functioning land

markets in the developing countries, a variant of

Ricardian approach has been used in the earlier In-

dian studies (see Kumar and Parikh, 2001b; Sanghi

and Mendelsohn, 2008). In place of land values,

farm level net revenue is used as a welfare indicator

and the value of the change in the environment is

assessed through change in farm level net revenue.

The Ricardian model is thus specified as follows:

NR = f ðTj; T2
j ; Rj; R

2
j ; TjRj; SOIL; BULLOCK;

TRACTOR; POPDEN; LITPROP; CULTIV;

IRR; ALTÞ;
ð1Þ

where, NR represents farm level net revenue per hect-

are in constant rupees and T and R represent temper-

ature and rainfall, respectively. It is noteworthy that
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based on the existing literature, we adopt a quadratic

functional specification along with climate interaction

terms (see Kumar and Parikh, 2001b; Mendelsohn

et al., 1994, 2001; Polsky, 2004; Sanghi and

Mendelsohn, 2008; Schlenker et al., 2006; Seo

et al., 2005). The control variables include soil

(SOIL, captured through dummies representing 19

soil types3 and five top-soil depth classes), the extent

of mechanization (captured through the number of

bullocks and tractors per hectare; BULLOCK,

TRACTOR), the percentage of literate population

(LITPROP), population density (POPDEN), altitude

(ALT, to account for solar radiation received), the

number of cultivators (CULTIV, to serve as proxy

for household/non-hired labour4), the fraction of area

under irrigation (IRR). We do not include the output

prices in the model. This is because an earlier study

by Kumar and Parikh (2001b) has shown that the

climate coefficients have not significantly changed

when the prices of major cereal crops are included in

the model specification.

We use pooled cross-sectional and time-series

data to estimate the above model. Districts are the

lowest administrative unit at which reliable agricul-

tural data are available. We use a comprehensive

district level data set for the period 1966–1986 for

the purpose of the analysis.5 The data set covers

districts defined according to the 1961 census

across 13 major states of India (Andhra Pradesh,

Haryana, Madhya Pradesh, Maharashtra, Karna-

taka, Punjab, Tamil Nadu, Uttar Pradesh, Bihar,

Gujarat, Rajasthan, Orissa and West Bengal). The

data set includes 271 districts in all.

The variables covered in the data set include the

gross and net cropped area, the gross and net irri-

gated area, the cultivators, the agricultural labour-

ers, the cropped area under high-yielding variety

seeds, the total cropped area under five major crops

(rice, wheat, maize, bajra and jowar) and 15 minor

crops (barley, gram, ragi, tur, potato, ground nut,

tobacco, sesamum, ramseed, sugarcane, cotton,

other pulses, jute, soybean, and sunflower); bul-

locks, tractors, literacy rate, population density,

fertilizer consumption (N, P, K) and prices, agricul-

tural wages, crop produce, farm harvest prices, soil

texture and top soil depth. For purposes of analysis,

we define farm level net revenue per hectare as

follows:

Net Revenue per ha

=
ððGross RevenueÞ�ðFertilizer and Labour CostsÞÞ

Total Area
;

ð2Þ
where gross revenue and the total area are over the

20 crops mentioned above, the fertilizer costs are

the total yearly costs incurred towards the use of

fertilizer for all the crops and the labour costs are

the yearly expenses towards hiring agricultural la-

bour. We do not include costs attributable to culti-

vators, irrigation, bullocks and tractors in the net

revenue calculations because appropriate prices

are difficult to identify. However, we use these var-

iables as control variables in the model as specified

in (1). It is possible that some of these control var-

iables are endogenous in nature and hence do not

strictly qualify as exogenous variables. We have

included them as exogenous variables in line with

the existing literature on climate change impacts

(Kumar and Parikh, 2001b; Sanghi and Mendelsohn,

2008).

Unfortunately, there is no ‘clean’ climate data

available for the analysis. Meteorological data are

collected at the meteorological stations and any dis-

trict may have one or many stations within its

boundary. Since all other data are attributable to a

hypothetical centre of the district, it is necessary to

work out the climate data too at the centre of the

district. For this purpose, it is customary to interpo-

late meteorological station data to arrive at a district

specific climate (see Kumar and Parikh, 2001b for

more details on the surface interpolation employed

to generate district level climate data). We use cli-

mate data corresponding to about 391 meteorolog-

ical stations spread across India for the purpose of

developing the district level climate. The data on

climate—at the meteorological stations and hence

at the districts—correspond to the average observed

weather over the period 1951–1980 as documented

in a publication of the India Meteorological Depart-

ment. We represent all the climate variables through

4 months, January, April, July and October, corre-

sponding to the four seasons. The climate variables
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include average daily temperature and monthly to-

tal rainfall in these 4 months.

We measure the dependent variable (namely, net

revenue) in (1) and some of the explanatory varia-

bles (such as population density, tractors, bullocks,

etc.) for every single year of the entire time period.

If annual weather data for each district were avail-

able for a continuous period of time, then we could

have used the rolling averages of 30 year weather

data as ‘climate’ for each year. That is, for the year

1966, the average weather over the period 1937–

1966 would serve as climate. This would ensure

that the farmer in each year responds to the climate

that she experiences. However, reliable annual

weather data at district level for a long period of

time is not available in India. The district level

annual weather data for the period 1901–2002 at

Climate Research Unit of the University of East

Anglia, for instance is based on a small number of

meteorological stations. Hence, climate data in the

analysis correspond to the average weather over

the period 1951–1980. However, we work under

the assumption that the climate has not changed

significantly over the study period and that the av-

erage weather over the 30-year periods is highly

temporally correlated.6

Given the scope for the presence of unobserved

variables that could confound with climate varia-

bles, it is possible to employ the district fixed-

effects specification for efficient estimation. Such

a specification would knockout the climate coeffi-

cients that are invariant over time. Deschenes and

Greenstone (2007) in a recent study on US agricul-

ture have used county fixed-effects specification

and have assessed the value of weather shocks to

the farmer as against the climate change impacts.

The present study with its focus on climate change

impacts attempts to address this issue by including

state fixed effects. The year effects are captured

through year fixed effects after the Hausman test

rejected the null hypothesis, implying that the ran-

dom effects model produces biased estimates. Fur-

ther, since the units of analysis (that is, districts)

differ significantly in size and agricultural activities,

the measurement errors might also substantially dif-

fer across districts. Hence, we weigh the data for

each unit of analysis by the total area under the 20

crops in order to adjust for heteroscedasticity.

Climate sensitivity and spatial
autocorrelation

We can introduce spatial features into the Ricardian

approach based on two arguments: (i) theory driven

and (ii) data driven. In the theory-driven arguments,

the focus is on interacting agents and social inter-

actions (Anselin, 2002). This means that agents

across space communicate with each other in order

to learn about farm management practices and re-

sponse strategies in order to handle climate and

other risks. The assumption is that such interaction

results in a spatially correlated dependent variable

(and, sometimes, independent variables also). The

resultant econometric specification then involves

including a spatially lagged dependent variable as

an additional independent variable.

In the data-driven specification, the focus is on

accounting for the inefficiency being created by the

possible presence of spatial correlation in the error

terms of the linear regression models. Two imme-

diate examples of these two types of specification

can be seen in the climate change context. While

Polsky (2004) introduces spatial econometric spec-

ification of the Ricardian model mainly to account

for social interactions, Schlenker et al. (2006) bring

in spatial features to arrive at efficient estimates of

regression coefficients. Either way, the estimation

procedure involves specifying the spatial weight

matrix, which provides a structure to the assumed

spatial relationships. The spatial models can be

specified as follows:

Spatial-error model : y = Xb + h;

where h = rWh + e;
ð3aÞ

Spatial-lag model : y = qWy + Xb + e; ð3bÞ
where, y is (nx1) vector of dependent variable

observations, X is (nxm) matrix of observations

on independent variables including the climate and

other control variables, b is (mx1) vector of regres-
sion coefficients, h is (nx1) vector of spatially cor-

related error terms, r is (1x1) spatial autoregressive

Climate sensitivity of Indian agriculture
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parameter, W is (nxn) spatial weights matrix and e
is (nx1) vector of random error terms. Note that y
andX are, respectively, the left-hand and right-hand

side variables specified in (1) above.

One of the crucial inputs that spatial analysis

needs is the weight matrix W. We use three weight

matrices—rook-based contiguity, queen-based con-

tiguity and distance-based contiguity—in the pres-

ent analysis. We generate these weight matrices for

the Indian districts in GeoDa software.7 We carry

out spatial econometric analysis in GeoDa and

STATA software for single cross-sections. How-

ever, since it is not feasible to estimate the spatial

fixed-effects model in GeoDa (and also in STATA

for computational limitations), we transfer the weight

matrices via R-software to ASCII data format. We

estimate the spatial panel models using MATLAB

software8 as it provides scope for reading sparse

matrices.

Climate change projections for India and
field studies

For the analysis, we use the climate change projec-

tions for India reported in Cline (2007). The climate

change projections are the average of predictions of

six general circulation models including HadCM3,

CSIRO-Mk2, CGCM2, GFDL-R30, CCSR/NIES

and ECHAM4/OPYC3. Table 1 shows the region-

wise and season-wise temperature and rainfall

changes for the period 2070–2099 with reference

to the base period 1960–1990. From these regional

projections, we assess the state-wise climate change

predictions by comparing the latitude–longitude

ranges of the regions with those of the states. In

addition to this India-specific climate change sce-

nario, we also assess the impacts for two illustrative

uniform climate change scenarios (a +2�C tem-

perature change along with a +7% precipitation

change; and a +3.5�C temperature change along

with a +14% precipitation change) that embrace

the aggregate changes outlined in the fourth assess-

ment report of IPCC (Solomon et al., 2007).

In an attempt to understand the scope and extent

of information exchange between farmers, focus

group meetings were held at around six villages

each in Tamil Nadu and Andhra Pradesh.9 The fo-

cus group meetings mainly explored the percep-

tions of the villagers about the climate change and

their views on strategies helpful in ameliorating the

climate change impacts. Among other things, spe-

cial attention was paid to the channels through

which information diffusion takes place.

Results and discussion

The results are reported in three subsections: in the

first subsection, we present the estimates of the

classic Ricardian approach, this is followed by a

discussion on spatial diagnostics with different

weight matrices; the last subsection reports the esti-

mates of the panel data analysis under spatial-lag

and spatial-error specifications and presents the

Table 1. Projected changes in climate in India: 2070–2099.

January–March April–June July–September October–December

Temperature change (�C)
Northeast 4.95 4.11 2.88 4.05

Northwest 4.53 4.25 2.96 4.16

Southeast 4.16 3.21 2.53 3.29

Southwest 3.74 3.07 2.52 3.04

Precipitation change (%)

Northeast �9.3 20.3 21.0 7.5

Northwest 7.2 7.1 27.2 57.0

Southeast �32.9 29.7 10.9 0.7

Southwest 22.3 32.3 8.8 8.5

Source: Cline (2007)
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estimates of climate change impacts on Indian ag-

riculture.

Climate response function—averaged
regression

For purposes of comparison and carrying out spatial

diagnostic tests, we average the data over the entire

period of analysis to create a single cross-sectional

data set. We use this single cross-sectional data set

for estimating (1) using the weighted least squares

approach, with area under cropland in each district

serving as the weight. Table 2 reports the estimated

regression coefficients.10

The estimated climate response function for the

average data over the period 1966–1986 has several

expected features with about 66% goodness-of-fit.

A large number of climate variables are significant.

Since soils tend to differ across districts, we include

the soil variables mainly to control for the influence

of cross-sectional variability of soil quality on the

dependent variable. The other control variables in-

clude cultivators per hectare, bullocks per hectare

and tractors per hectare. Both cultivators and bul-

locks have a mixed expected influence on the

farm-level net revenue. On the one hand, the higher

values of these variables reduce the cost to the far-

mer, but on the other hand, high values also represent

labour intensive farming and hence a low technolog-

ical base. Tractors per hectare clearly have a high

significant positive influence on farm-level net rev-

enue. Literacy and population density have a positive

effect as expected. The percentage of land under

irrigation clearly increases farm-level net revenue.

Some studies have argued against the use of irriga-

tion as one of the explanatory variables due to the

potential endogeneity problem and have suggested

instead the use of area under high-yielding variety

cultivation. However, since most of the irrigated land

also cultivates high-yielding variety crops, these two

variables could be largely collinear.

Most of the climate variables are significant and

the estimated response function appears to be non-

linear, in line with available evidence in the litera-

ture. Magnitudes of the temperature coefficients are

higher than those of the precipitation coefficients,

indicating relatively higher sensitivity crop growth

to temperature changes (Lobell and Burke, 2008).

The temperature coefficients are all negative in

January (winter), April (spring) and July (summer)

but positive in October (autumn). While higher tem-

peratures during the hot spring and summer days

would adversely influence crop growth, warmer

autumns could lead to an enhanced growing season.

Higher temperature during winter could favourably

influence pest growth and hence could have an ad-

verse impact on crop growth. Higher precipitation

as expected is beneficial in the winter and autumn

Table 2. Climate response function—averaged regression.

Variable Coefficient t-statistic

January temperature �435.34 �1.84

April temperature �593.01 �2.31

July temperature �946.30 �2.05

October temperature 2170.91 3.68

January precipitation 31.67 1.11

April precipitation �14.19 �1.62

July precipitation �2.07 �1.06

October precipitation 28.62 2.86

January temperature sq. �46.11 �1.22

April temperature sq. 127.10 1.89

July temperature sq. �102.44 �0.75

October temperature sq. �264.03 �3.39

January precipitation sq. �2.56 �2.85

April precipitation sq. 0.17 2.26

July precipitation sq. 0.004 1.00

October precipitation sq. 0.03 0.33

January temperature 3 precipitation �32.64 �2.99

April temperature 3 precipitation 15.19 4.34

July temperature 3 precipitation �1.21 �0.94

October temperature 3 precipitation �2.60 �0.61

Soil type 1 296.94 0.96

Soil type 2 1449.99 3.59

Soil type 3 �907.00 �1.69

Soil type 4 55.70 0.13

Top-soil depth class 1 �535.40 �0.66

Top-soil depth class 2 137.34 0.16

Cultivators per hectare 1125.11 1.63

Bullocks per hectare �325.89 �0.42

Tractors per hectare 286077.50 3.30

Literacy 1577.35 0.85

Population density 184.36 1.48

Percentage of irrigated land 3786.24 3.25

Altitude �0.98 �1.00

Intercept 4717.93 3.62

Number of observations 271

Adjusted R2 0.668
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seasons but harmful during spring and summer prob-

ably due to reduced solar radiation.

For purposes of comparison with the spatial

models, we carry out a pooled regression analysis

covering all the years of the study period with ex-

actly similar specification as the averaged regres-

sion discussed here. In addition to all the variables

discussed above, we include the year fixed effects

in the panel data analysis. All the coefficients re-

tained the sign and magnitude in the pooled regres-

sion and have improved statistical significance.

Almost all the climate coefficients were statistically

significant in the pooled regression (we report these

results later in Table 4 along with spatial panel data

analyses results).

As discussed above, a valid criticism of the

Ricardian approach is unobserved cross-sectional

variables confounding with climate variables. And

including district fixed effects in the pooled data

analysis is not feasible given the non-varying nature

of some of the independent variables, including the

climate variables, over the years. In an attempt to

improve the model specification, we added regional

fixed effects to (1) in the form of state dummies.

Almost 70% of the climate variables remained sig-

nificant in the model with state dummies, confirm-

ing that regional fixed effects have not nullified the

influence of climate on farm-level net revenue. Bar-

ring a few exceptions, the direction of influence

also remained similar between models without

and with regional fixed effects. The magnitude of

individual coefficients however has changed as was

to be expected. But, we did not include the regional

dummies for the rest of the analysis.

Diagnostics for spatial dependence

We analyze the spatial clustering of the dependent

variable (that is, net revenue per hectare) and the re-

sidual of the ordinary least squares, regression by

constructing Moran scatter plots for several time

points in the period 1966–1986. The scatter plot

is a graph of Wy versus y, where W is a row-stan-

dardized spatial weight matrix and y = [(variable

value�mean of variable)/standard deviation of vari-

able]. We use a rook-contiguity-based weight matrix

for constructing the Moran scatter plots. The slope of

the best-fit line through the points on the scatter plot

provides a measure of Moran’s I spatial autocorrela-

tion statistic for the data set. The Moran’s I statistic

for the dependent variable as well as the error for

1970, 1975, 1980 and 1985 are, respectively, 0.223,

0.353, 0.395, 0.431 and 0.158, 0.136, 0.176, 0.105

(all statistically significant with p value of 0.000).

The positive value of Moran’s I statistic indicates

clustering of values in the upper right quadrant and

lower left quadrant of Moran’s scatter plot and hence

represent positive spatial autocorrelation.

The indication of significant spatial clustering

given by the spatial autocorrelation statistic repre-

sents only the first step in the analysis of spatial

data. We carry out spatial diagnostic tests on the

averaged regression reported in the previous section

to statistically assess the extent of spatial depen-

dence in the data and to identify the appropriate

correction for removing the spatial dependence in

the data. Table 3 reports various test statistics under

different weight matrix specifications.

The first row in Table 3 shows the Moran I sta-

tistic of the error along with the associated proba-

bility. It shows the statistic to be highly significant

indicating the problem of spatial dependence in the

data. The value of Moran I statistic is close to 0.2

across the different weight matrix specifications in-

dicating that alternative weight matrices may not

have a significant influence on the analysis.

Following Anselin (2005), we use the Lagrange

multiplier test to determine which spatial model

should be used for spatial correction (spatial lag

or spatial error). The sequence of the search is as

follows: if both Lagrange multiplier (lag and error)

statistics are significant, then we consider the robust

versions of these tests to be significant and we

choose the model specification with the higher sig-

nificance for the spatial analysis. In all cases re-

ported in Table 3, the Lagrange multiplier (lag

and error) statistics are highly significant, necessi-

tating the need for examining the robust Lagrange

multiplier test statistic. In rook-contiguity and

queen-contiguity-based weight matrix specifica-

tions, the robust Lagrange multiplier statistics for

both lag and error are significant, with the latter

highly significant compared to the former. In the
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case of distance-based weight matrix specification,

however, the robust Lagrange multiplier tests sug-

gest the spatial-error model as the preferred model

for spatial correction.

Effect of spatial autocorrelation on climate
sensitivity

The evidence presented above based on the aver-

aged regression makes it clear that: (a) the choice of

the weight matrix may not have a significant influ-

ence on the analysis and (b) the choice of the model

for spatial correction—namely, spatial lag and spa-

tial error—is not obvious, with the robust Lagrange

multiplier test statistic remaining significant under

lag as well as error specifications. Hence, we use

both these models for spatial correction and re-

estimate (1) with the modifications specified in (3a)

and (3b) using the panel data over the period 1966–

1986.We base all the estimates on fixed (year) effects

specification in the pooled data and the obser-

vations are weighted by the total area under all the

crops considered in the analysis. Thus, we attempt

two kinds of heteroscedasticity corrections in the spa-

tial analysis: the first is through the crop area in each

district in order to account for differences in the size

of the districts and hence the difference in the mea-

surement error; and the second is through the weight

matrix in order to account for spatial dependence in

the data. We use the rook-contiguity-based weight

matrix to estimate the spatial models.

Table 4 shows the climate response functions es-

timated with and without consideration of spatial

autocorrelation. Though the adjusted R2 value is

higher under both the spatial models, it is what is

known as the pseudo R2 and hence not exactly

comparable with that in ordinary least squares esti-

mation (Elhorst, 2003). Most of the climate coeffi-

cients in both the spatial-lag and spatial-error

models are significant and have a similar influence

as the base model without the spatial correction.

Barring a few exceptions, the climate coefficients

in the models that account for spatial autocorrela-

tion (either through spatial-lag or spatial-error mod-

els) are uniformly lower than that which ignores the

presence of spatial autocorrelation. This implies

that the explanatory power of the climate variables

that we attributed to their within district value in the

base model was partly due to the influence of neigh-

bouring districts.

With regard to the choice between the two spatial

models, the diagnostic tests were inconclusive as

discussed in the previous section. The coefficient

of the spatially lagged farm-level net revenue in

the spatial-lag model and the coefficient of spatially

correlated errors in the spatial-error model are both

positive and highly significant. The model perfor-

mance parameters, the higher adjusted R2 value

(0.72 versus 0.65) and the higher log-likelihood value

(�127406 versus�127861), indicate that the spatial-

error model is preferred over the spatial-lag model.

In order to gain insight into the influence of var-

ious climate change scenarios on Indian agriculture,

we assess the impacts based on the estimated cli-

mate response functions. We consider two climate

scenarios: (a) one illustrative scenario with a +2�C
uniform change in temperature and a +7% uniform

change in precipitation (b) one India-specific scenario

with the expected regional changes in temperature

Table 3. Spatial diagnostics—averaged regression.

Diagnostic parameter Weight matrix

Rook-contiguity Queen-contiguity Distance-based (50 km)

Moran I (error) 0.19917 (0.000) 0.19394 (0.000) 0.20392 (0.000)

LM (lag) 14.94 (0.000) 14.41 (0.000) 7.33 (0.006)

Robust LM (lag) 3.56 (0.059) 3.41 (0.065) 0.81 (0.267)

LM (error) 26.53 (0.000) 26.05 (0.000) 14.55 (0.000)

Robust LM (error) 15.15 (0.000) 15.05 (0.000) 8.03 (0.004)

Note: Values in the parentheses are p values, LM—Lagrange multiplier
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and precipitation as reported in Table 1. We mea-

sure the climate change induced impacts through

changes in the net revenue triggered by the changes

in the climate variables. We estimate the impacts

for each year at the individual district level, which

we then aggregate to derive the national level im-

pacts. We report the average impacts over all the

years in Table 5. The table reports the all India level

impacts estimated in each time period as a percent-

age of the 1990 all India net revenue expressed

in 1999–2000 prices. We consider the 1990 net

revenue mainly to accommodate a comparison with

previous results reported in the literature. We inter-

pret the impacts as a change in 1990 net revenue if

future climate changes were to be imposed on the

1990 economy and are annual impacts. We estimate

that the overall impacts (for the same climate change

scenario) using climate coefficients obtained from

the model that accounts for spatial autocorrelation

(either through spatial-lag or through spatial-error

specification) are significantly lower than those ob-

tained from the model that ignores the spatial effects.

Table 4. Climate response function—pooled regression with spatial correction.

Variable

Without spatial autocorrelation

With spatial autocorrelation

Spatial-lag model Spatial-error model

Coefficient t-statistic Coefficient t-statistic Coefficient t-statistic

Climate variables

January temperature �443.3 �6.5 �394.8 �5.6 �395.3 �5.1

April temperature �695.5 �9.6 �537.1 �7.5 �668.5 �8.3

July temperature �817.9 �6.1 �575.3 �4.3 �809.3 �5.4

October temperature 2160.4 12.5 1833.0 10.5 1709.0 9.2

January precipitation 38.5 4.6 13.6 1.6 �7.3 �0.8

April precipitation �17.2 �6.8 �14.6 �5.5 �7.8 �2.9

July precipitation �2.2 �3.9 �1.3 �2.2 �2.5 �4.3

October precipitation 29.5 10.1 20.8 7.1 18.4 5.9

January temperature sq. �43.8 �3.9 �24.1 �2.1 �11.4 �1.0

April temperature sq. 118.4 6.2 101.9 5.2 139.0 6.5

July temperature sq. �96.9 �2.5 �25.6 �0.6 117.7 2.7

October temperature sq. �264.0 �11.6 �234.0 �10.1 �236.3 �9.7

January precipitation sq. �2.8 �10.6 �2.6 �9.5 �1.9 �6.5

April precipitation sq. 0.2 8.0 0.2 6.9 0.097 4.8

July precipitation sq. 0.004 3.4 0.005 4.5 0.002 2.1

October precipitation sq. 0.028 1.2 0.1 3.8 0.057 2.3

January temperature 3 precipitation �36.3 �11.4 �38.5 �11.7 �26.8 �7.2

April temperature 3 precipitation 15.8 15.7 15.2 14.7 10.3 10.5

July temperature 3 precipitation �1.5 �4.0 �0.7 �1.8 �0.4 �0.9

October temperature 3 precipitation �2.9 �2.3 �4.1 �3.2 1.8 1.3

Control variables

Cultivators/ha 382.1 2.3 163.1 1.0 758.5 5.0

Bullocks/ha 91.2 0.4 558.4 2.6 1105.6 5.5

Tractors/ha 153798 9.6 63282 4.1 67539 4.3

Literacy 2780.0 5.4 4039.0 8.5 3160.2 6.5

Population density 128.8 3.9 174.5 4.8 182.0 4.7

Irrigation % 2643.9 9.3 2648.4 9.4 3538.1 13.0

Spatial lag/Spatial autocorrelation 0.0649 4.3 0.57 4.2

Number of observations 5691 5691 5691

Adjusted R2 0.5464 0.6517 0.7233

Note: The model specification is same as equation (1); soil variables are not reported to save space
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This is because the aggregate net revenue estimated

for changed climatic conditions using the spatial

models is higher than that estimated using model

that does not account for spatial effects.

Since the aggregate impacts mask significant re-

gional differences, Figures 1 and 2 compare the dis-

tribution of climate change impacts at the state and

district levels between the models that account for

spatial autocorrelation and those that do not. For these

figures, we use the India-specific climate change sce-

nario that incorporates non-uniform changes in tem-

perature and precipitation across regions. The results

show that climate change is likely to adversely af-

fect agriculture in almost all the regions in India

with the exception of the eastern states of Bihar

and West Bengal along with the inland region of

Karnataka. Severe impacts are borne by the high-

value agricultural regions of Haryana, Punjab and

Uttar Pradesh along with the dry regions of Gujarat

and Rajasthan. Coastal states like Andhra Pradesh

and Tamil Nadu also lose out under changed climatic

conditions. Between the models that do not incorpo-

rate spatial correction and the models that do, we

predict significant changes in Andhra Pradesh, Tamil

Nadu, Rajasthan, Madhya Pradesh and to some ex-

tent in Uttar Pradesh. This means that in the case of

these states, the model without spatial correction

overestimated the climate change impacts.

Conclusions and policy
recommendations

This paper contributes to existing knowledge on the

impacts of climate change on Indian agriculture by

accounting for spatial issues in a Ricardian frame-

work. Using ;20 years of district level agricultural

data coupled with climate and soil data, the analysis

employs spatial panel data models to explore these

issues. Besides estimating the climate response

function for Indian agriculture, the paper estimates

the expected impacts due to climate change on In-

dian agriculture.

The evidence presented in this paper suggests

that (a) accounting for spatial autocorrelation is im-

portant due to the presence of significant spatial

clustering of the data and (b) the climate change

impacts are significantly lower after incorporat-

ing spatial correction either through spatial-lag or

through spatial-error model specifications. The choice

between spatial-lag and spatial-error model specifi-

cations for spatial correction is largely inconclusive.

However, purely from a model performance perspec-

tive, the spatial-error model has a slight edge over

the spatial-lag model.

Figure 1. State-wise distribution of climate change impacts:
without and with spatial correction.
Note: Base—model without spatial correction, AP, Andhra
Pradesh, MP, Madhya Pradesh, SAR—spatial-lag model,
SER—spatial-error model, TN, Tamil Nadu and UP, Uttar
Pradesh.

Table 5. Climate change impacts—without and with spatial autocorrelation.

Scenario (DT/DP)

Without spatial autocorrelation

With spatial autocorrelation

Spatial lag model Spatial error model

Impacts % of 1990

net revenue

Impacts % of 1990

net revenue

Impacts % of 1990

net revenue

+2�C/7% �81.2 �9.17 14.2 1.6 �22.9 �2.6

India specific CC scenario �195.1 �22.1 43.4 4.9 �2.1 �0.23

Note: Impacts are in billion rupees, 1999–2000 prices. Net revenue in India in 1990 is Rs. 885 billion (1999–2000 prices)
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The impacts of climate change on agricultural net

revenue estimated in this paper are lower than the

range of results obtained from other climate change

agricultural impact studies in India. Under an illus-

trative climate change scenario of +2�C temperature

change and +7% precipitation change, the results

from this study estimate an annual decline of 3%

in farm-level net revenue. On the other hand, for a

similar climate change scenario but without account-

ing for the spatial autocorrelation, Kumar and Parikh

(2001b) and Sanghi and Mendelsohn (2008) esti-

mate, respectively, 8.4% and 12% decline annually

in farm-level net revenue in India. The impacts on

the gross domestic product estimated by Kumar and

Parikh (2001a) are not strictly comparable with those

reported in the above studies due to the partial equi-

librium approach adopted in the Ricardian frame-

work. However, yield losses estimated by Kumar

and Parikh (2001a) and others reported in Mall

et al. (2006) are relatively higher than the losses in

net revenue estimated by the Ricardian studies.

We also estimate the impacts due to an India-

specific climate change scenario along with the re-

gional distribution of impacts. With the exception

of the eastern states of Bihar and West Bengal and

the inland region of Karnataka, in all other regions

of India climate change is likely to have an adverse

impact on agriculture. These findings could rein-

force the ‘look towards east’ policy of Indian gov-

ernment. Further this study findings show that in the

case of Andhra Pradesh, Tamil Nadu, Rajasthan,

Madhya Pradesh and, to some extent, Uttar Pradesh,

incorporating the spatial effects results in a lowering

of the climate change impacts on agriculture.

The assessment of climate change impacts on In-

dian agriculture through a careful consideration of

spatial issues in the Ricardian framework that this

study has carried out would be useful in providing

a more accurate picture of the potential impacts of

climate change on Indian agriculture. However,

from a policy perspective, it would be helpful to

identify factors that contribute to the observed spa-

tial correlation of variables across districts. Such

knowledge would be useful in designing policies

that contribute to enhancing the facilitating factors.

While the factors contributing towards the spatial

Figure 2. Distribution of climate change impacts across districts—without and with spatial correction.
Note: Base—model without spatial correction.
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effects are unclear, this study explored the possible

role played by a strong flow of information among

farmers in contributing to better adaptation and

thereby lower the impact of climate change on agri-

culture. The field level observations discussed here

are based on limited number of focus group discus-

sions and are only indicative. More detailed studies

are needed to further substantiate these findings.

Focus group interviews from the field indicate

that the main sources of information to farmers

are the more affluent farmers in the neighbourhood,

fertilizer and pesticide dealers, seed providers and

the better informed family members. Contrary to

the general belief that agricultural extension centres

operate as the primary source of information, the

evidence from the field suggests that, in reality,

farmers could benefit little from these government

outfits. While market sources seem to have the ap-

propriate self-regulated checks against the provision

of wrong information, it is important to ensure that

incorrect information does not reach the farmers

even inadvertently.

The field studies also reveal that policy makers

should explore and experiment with new sources of

information diffusion. Given the fragmented nature

of Indian agricultural lands, the large-scale partici-

pation of the corporate sector in providing agricul-

tural extension services would be difficult, thereby

necessitating the exploration of other options. Among

other options, the farmers favoured in particular

the participation of agricultural cooperatives, non-

governmental organizations (NGOs), and dealers

of inputs and fertilizers in information diffusion.

In this context, it might be worthwhile to carefully

study other country experiences in order to identify

the routes through which the State can provide ag-

ricultural extension services to the farmers in India.

For instance, in Ecuador, the agricultural extension

workers operate in tandem with the farmers through

share cropping in order to ensure proper information

diffusion. On the other hand, Chile finances the costs

of private sector firms that transfer technology know-

how and information on new agricultural practices

to small-scale farmers. Similarly, role of information

and communication technology in agricultural knowl-

edge diffusion should also be carefully studied.

The Ricardian approach we used in this study

deals largely with private adaptation measures

undertaken by farmers for whom not adapting (that

is through changes in crop-mix and crop management

practices) would be suboptimal. However, climate

change also requires large-scale public adaptation

alongside the afore-mentioned private adaptation

practices. Future research in this field could focus

on the nature of such adaptation as well as assess-

ment of cost-effective adaptation strategies in order

to ameliorate the adverse impacts of climate change

on Indian agriculture. For mainstreaming the cli-

mate change concerns especially in developing

countries like India, such strategies should seam-

lessly merge with the overall development agenda.

Endnotes

1 A few studies have used a third approach based on the

agro-ecological zones methodology of the Food and Ag-

ricultural Organization (Fischer et al., 2002).
2 Higher carbon dioxide concentrations in the atmosphere

under the climate change conditions could act like aerial

fertilizers and boost crop growth.
3 Soil types considered include laterite, red and yellow,

shallow black, medium black, deep black, mixed red and

black, coastal alluvium, deltaic alluvium, calcerous, grey

brown, desert, tarai, black, saline and alkaline, alluvial river,

skeletal, saline and deltaic, red and red and greyely soils.
4 We do not include the cost of household/non-hired

labour in the net revenue estimation as appropriate wage

rate is difficult to get. Cultivators—self-employed males

who list their primary job classification as farming—are

included as proxy for household/non-hired labour.
5 This relatively older time period was chosen to enable

comparability of the basic findings from this study with

those available in the literature (namely, Kumar and Parikh,

2001b; Sanghi and Mendelsohn, 2008) that do not account

for spatial effects.
6 We acknowledge that some studies (see Dash et al., 2009;

Naidu et al., 2009; Niyogi et al., 2010) report that climate,

especially rainfall, has changed in the recent years over

India. However, Sanghi and Mendelsohn (2008) in their

analysis use climate data corresponding to the period

1930–1960 and report almost similar results as in this

study. This is seen as justification for the above claim that

the climate has remained stable over the study period.
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7 The spatial econometric software developed by Prof.

Luc Anselin of the University of Illinois (version 0.9.5).
8 J. Paul Elhorst (www.spatial-econometrics.com) has writ-

ten the MATLAB codes for spatial panel analysis.
9 The field studies were carried out during the months of

March–April 2008 with the help of local NGOs. In Tamil

Nadu, the villages covered included Manampathy,

Thevoor, Kumaramangalam, Echur, Arungunram and Thir-

unilai. In Andhra Pradesh, Kothapatnam, Nidavanur,

Kuchipudi, Nilayeepalem and Chinagangam villages were

covered for the focus group discussions.
10 In order to keep the analysis focused on climate vari-

ables, we do not report the influence of weather variabil-

ity on climate sensitivity. Kumar (2003) analyses the

robustness of climate coefficients in the presence of

weather variability and argues that climate continues to

play important role even in the presence of weather var-

iability in the model specification.
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