
LOW-RANK APPROXIMATIONS WITH SPARSE FACTORS I:BASIC ALGORITHMS AND ERROR ANALYSISZHENYUE ZHANG�, HONGYUAN ZHAy AND HORST SIMONzAbstract. We consider the problem of computing low-rank approximations of matrices. Thenovel aspects of our approach are that we require the low-rank approximations be written in afactorized form with sparse factors and the degree of sparsity of the factors can be traded o� forreduced reconstruction error by certain user determined parameters. We give a detailed error analysisof our proposed algorithms and compare the computed sparse low-rank approximations with thoseobtained from singular value decomposition. We present numerical examples arising from someapplication areas to illustrate the e�ciency and accuracy of our algorithms.Key words: low-rankmatrix approximation, singular value decomposition, sparsefactorization, perturbation analysisAMS subject classi�cations. 15A18, 15A23, 65F15, 65F501. Introduction. We consider the problem of computing low-rank approxima-tions of a given matrix A 2 Rm�n which arises in many applications areas; see[5, 14, 17] for a few examples. The theory of singular value decomposition (SVD)provides the following characterization of the best low-rank approximations of A interms of Frobenius norm k � kF [5, Theorem 2.5.3].Theorem 1.1. Let the singular value decomposition of A 2 Rm�n be A = U�V T ,� = diag(�1; : : : ; �min(m;n)); �1 � : : : � �min(m;n);and U and V orthogonal. Then for 1 � k � min(m;n),min(m;n)Xi=k+1 �2i = minf kA�Bk2F j rank(B) � kg:The minimum is achieved with bestk(A) � Uk diag(�1; : : : ; �k)V Tk ; where Uk and Vkare the matrices formed by the �rst k columns of U and V , respectively.For any low-rank approximation B of A, we call kA � BkF the reconstructionerror of using B as an approximation of A. By Theorem 1.1, bestk(A) has thesmallest reconstruction error in Frobenius norm among all the rank-k approximationsof A. In certain applications, it is desirable to impose further constraints on thelow-rank approximation B in addition to requiring that it be of low-rank. Considerthe case where, for example, the matrix A is sparse; it is generally not true that� Department of Mathematics, Zhejiang University, Yuquan Campus, Hangzhou, 310027, P.R. China. zyzhang@math.zju.edu.cn, and National Energy Research Scienti�c Computing Center,Lawrence Berkeley National Laboratory, One Cyclotron Road, M/S: 50F, Berkeley, CA 94720, USA.The work of this author was supported in part by NSFC (project 19771073), the Special Funds forMajor State Basic Research Projects of China (project G19990328), and Foundation for UniversityKey Teacher by the Ministry of Education, China. The work also was supported in part by NSF grantsCCR-9619452 and by the Director, O�ce of Science, O�ce of Laboratory Policy and InfrastructureManagement, of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.y Department of Computer Science and Engineering, The Pennsylvania State University, Univer-sity Park, PA 16802, zha@cse.psu.edu. The work of this author was supported in part by NSFgrants CCR-9619452 and CCR-9901986.z National Energy Research Scienti�c Computing Center, Lawrence Berkeley National Laboratory,One Cyclotron Road, M/S: 50B, Berkeley, CA 94720, HDSimon@lbl.gov. This work was supportedby the Director, O�ce of Science, O�ce of Laboratory Policy and Infrastructure Management, ofthe U.S. Department of Energy under Contract No. DE-AC03-76SF00098.1

2 ZHENYUE ZHANG, HONGYUAN ZHA AND HORST SIMONbestk(A) = Uk�kV Tk or even its associated factors Uk and Vk also will be sparse.Therefore, the storage requirement of bestk(A) in the factorized form bestk(A) =Uk�kV Tk can be even greater than that of the original matrix A. To overcome thisdi�culty, we seek to �nd low-rank approximations that simultaneously also possesssome sparsity properties. One possibility will be to impose sparsity requirementsdirectly on the low-rank approximation B itself, i.e., we require that B be sparse.However, this approach is less
exible and it is very di�cult to achieve a reasonablereconstruction error (comparing with that obtained from bestk(A), for example) usinga sparse B. Inspired by the work reported in [7, 15], we consider the approach ofwriting B in a factorized form as B = XDY T , and imposing sparsity requirementson the factors X and Y instead while keeping D in positive diagonal form. Therefore,even though X and Y are sparse B may be rather dense, and this actually givesthe
exibility to achieve smaller reconstruction errors. One by-product of using thefactorized form is that the low-rank constraint on B is trivially satis�ed once B isin the factored form, i.e., rank(B) � k if X has k columns. Although the focus ofthis paper is on imposing sparsity constraints, we should also mention that otherconstraints on the low-rank approximations may also be desirable: in latent classmodels for two-way contingency tables [4], probabilistic Latent Semantic Indexing [6]and nonnegative matrix factorization [8], for example, elements of columns X and Yrepresent conditional probabilities, and therefore are required to be nonnegative. Asanother example, in the so-called structured total least squares problems, the low-rank approximations need to have certain structures such as Toeplitz or Hankel [12].We also mention that there has been research on solving linear systems and linearleast squares problems with sparse solution vectors [3, 10].The rest of the paper is organized as follows: In section 2, we cast the problemof computing sparse low-rank approximations in the framework of an optimizationproblem. We then propose algorithms and heuristics for �nding approximate optimalsolutions of this optimization problem. In section 3, we give a detailed error analysis ofthe proposed algorithms and heuristics. Speci�cally, we prove that the reconstructionerrors of the computed sparse low-rank approximations are within a constant factorof those that are obtained by SVD. In section 4, we discuss several computationalvariations of the basic algorithms proposed in section 2 and in section 5 we conductseveral numerical experiments to illustrate the various numerical and e�ciency issuesof our proposed algorithms. We also compare the low-rank approximations computedby our algorithms with those obtained by SVD and the approaches developed in [15].In section 6, we summarize our contributions and point out future research directions.Notation. We use �k(A) to denote the kth singular value of a matrix A innonincreasing order. We also replace �k(A) by �k when the matrix in question isunambiguous. By k � k we denote the 2-norm of vectors or matrices.2. Sparse low-rank approximations. We �rst review some previous work oncomputing low-rank approximations with sparse factors. O'Leary and Peleg proposeda method for computing low-rank approximations for image processing [11]. In [7]Kolda and O'Leary called this semi-discrete decomposition (SDD) where they writea low-rank approximation as Bk = XkDkY Tk with Xk 2 Rm�k, Yk 2 Rk�n, andDk nonnegative diagonal. Furthermore, they require that the entries of Xk and Ykbelong to three-element set f�1; 0; 1g. The restriction on the elements of Xk and Ykusually demands a much larger k � K in order for Bk to achieve a reconstructionerror comparable to that of bestK(A), and therefore the low-rank property of Bk maynot hold. Despite this the storage requirement of Bk in the factored form is usually

Matrix Low-Rank Approximations with Sparse Factors 3much lower than that of A, and this is certainly the major strength of SDD as isdemonstrated in the application in latent semantic indexing. In [15], Stewart proposesto construct low-rank approximations of a sparse matrix A by selecting a subset of itscolumns and rows, i.e., he writes a low-rank approximation as Bk = AcMATr , whereAc and ATr are certain k columns and k rows of A, respectively, and M is chosento minimize the error kA � AcMATr kF once the left and right factors Ac and Arare chosen. The matrices Ac and Ar are determined by variations of QR algorithmswith a certain pivoting strategy. In general, the matrix M will be dense. Due tothe denseness of M , the storage requirement of Bk can become rather high as kincreases, and also the low-rank approximation will not be sparse if A itself is notsparse. Numerical experiments showed that Stewart's approach is especially e�ectivewhen A itself is close to high rank-de�ciency. The approach we now propose buildson the strength of the above two approaches: we seek an approximation that is oflow-rank and at the same time we also want to have greater control of the sparsityproperties of the low-rank approximation. To this end, we consider the followinggeneral minimization problem.1min kA�XkDkY Tk kFsubject to Dk positive diagonal, Xk 2 Rm�k and Yk 2 Rn�k sparse:(2.1)The above optimization problem in its present form is not completely speci�ed becausethe minimum depends on the sparsity constraints: the number of nonzero elements ofthe left and right factors and the positions of those nonzero elements which constitutewhat we call their sparse patterns. So ideally the goal is to make the reconstructionerror kA�XkDkY Tk kF as small as possible and keep in mind the following questions:� How to determine good sparsity patterns for the left and right factors?� How to �nd the best approximation Bk = XkDkY Tk with the chosen sparsitypatterns for Xk and Yk?In this paper we will not discuss how to impose the sparsity constraints on the factorsXk and Yk in general, but rather we will �rst start with an heuristic. In this section,we propose the framework of our sparse low-rank approximation (SLRA) approachbased on the idea of de
ation. As can be seen, the heuristic dynamically and implicitlyimposes sparsity constraints on Xk and Yk.Algorithm SLRA (Sparse low-rank approximation). Given amatrix A 2 Rm�n and an integer k � minfm;ng, this algorithmproduces a positive diagonal matrix Dk, and sparse matrices Xkand Yk. At the conclusion of the algorithm, Bk � XkDkY Tk givesa low-rank approximation of A with sparse factors.1. [Initialize] Set A0 = A.2. For i = 1; 2; � � � ; k2.1 [Rank-one approximation] Find a sparse rank-oneapproximation xidiyTi to Ai�1 with sparse unit vec-tors xi and yi.2.2 Set Ai = Ai�1 � xidiyTi .Algorithm SLRA consists of a sequence of k de
ation steps [13] which allows usto build a low-rank approximation one rank at a time. This general approach is1 The diagonal elements of D can certainly be constructed to be positive as we will do in thesequel.

4 ZHENYUE ZHANG, HONGYUAN ZHA AND HORST SIMONalso adopted in [7], but the actual de
ation step there is very di�erent from ours.After k steps, Ak = A � XkDkYk with Xk = [x1; � � � ; xk], Yk = [y1; � � � ; yk] andDk = diag(d1; � � � ; dk). It is worthwhile to point out that the integer k, the rank ofBk in general, can be determined by the stopping criterion kA �XkDkY Tk kF � tolbecause the error kA�XkDkY Tk kF = kAkkF can be easily calculated by a recurrencerelation derived in Section 4.The key step of Algorithm SLRA is Step 2.1, i.e., computing sparse rank-oneapproximations. By Theorem 1.1 the best rank-one approximation to A is given byu�vT with fu; �; vg the largest singular triplet of A. The triplet fu; �; vg can also beused to produce a good sparse rank-one approximation. The basic idea is to sparsifyu and v to get sparse vectors x and y, and choose a scalar d such thatkA� xdyT k2F = mins kA� xsyT k2F = kAk2F � d2:(2.2)Since the left and right singular vectors u and v will undergo this sparsi�cation process,it is not necessary to compute them to high accuracy (see the remark after Theorem3.2). The details of Step 2.1 of SLRA is listed below.Step 2.1 of SLRA (Sparse rank-one approximation.) Given amatrix A, this algorithm produces a rank-one matrix xdyT withsparse vectors x and y.1. Compute (approximations of) the largest left and rightsingular vectors u and v of A.2. Sparsify u and v to get sparse vectors x and y with kxk =kyk = 1.2.1 [Sort] Sort the entries of u and v in two sections:P1u = � u+u� � ; P2v = � v+v� � ;where P1 and P2 are the permutation matrices re-sulted from the sorting process.2.2 [Sparsify] Discard the second sections u� and v� toget sparse vectors x and y:x P T1 � u+0 � =ku+k; y P T2 � v+0 � =kv+k:3. Set d � xTAy which minimizesfkA� xsyT kF j s scalarg:3. Error analysis. In this section we will compare the low-rank approxima-tions computed by Algorithm SLRA with those obtained by SVD with respect tothe reconstruction errors. One possible potential alternative is to make the com-parison directly with the optimal solutions of (2.1) assuming we have made morespeci�cations on the sparsity of Xk and Yk. For example, we can impose constraintson the number of nonzeros of Xk and Yk, and leave the positions of those nonzerosopen. This approach at the moment is rather di�cult to pursue because we still

Matrix Low-Rank Approximations with Sparse Factors 5do not have a good understanding of the structures of the optimal solutions (2.1).Fortunately, bestk(A) obtained from SVD gives the optimal solutions for (2.1) whenthere are no sparsity constraints on Xk and Yk, and the heuristic of Algorithm SLRAtakes advantage of this connection. Therefore we choose to compare the low-rankapproximation Bk = UkDkV Tk with bestk(A) computed by SVD. To proceed, we �rstconsider the rank-one case, assuming we have computed the largest singular tripletexactly. Throughout the rest of the paper, we assume that A 2 Rm�n.Theorem 3.1. Let fu; �; vg be the largest singular triplet of A. Use the samenotation as in Step 2.1 of Algorithm SLRA, and assume that ku�k2 + kv�k2 � 2�2with � � 1=p3. Then kA� xdyT kF � p1 + ��kA� u�vT kF ;(3.3)where � = �21Pnj=2 �2j ; � = 4�2�1� �4(1� �2)2� < 4�2:Proof. Notice that d is chosen such that kA� xdyT k2F = kAk2F � d2 as shown in(2.2), we need to derive a lower bound for jdj. To this end, partitionP1AP T2 = � A11 A12A21 A22 �conformably with P1u and P2v (see Step 2.1 of Algorithm SLRA). It follows from thechoice of d that d = xTAy = uT+A11v+=(ku+k � kv+k):(3.4)Recalling that Au = �v and AT v = �u, we obtainuT+A11v+ + uT+A12v� = �ku+k2; uT�A21v+ + uT�A22v� = �ku�k2;and similarly, we havevT+AT11u+ + vT+AT21u� = �kv+k2; vT�AT12u+ + vT�AT22u� = �kv�k2:Subtracting the sum of the last two equations of the four equations above from thesum of the �rst two yieldsuT+A11v+ = uT�A22v� + �(1� ku�k2 � kv�k2):(3.5)Then substituting (3.5) into (3.4) givesjdj = juT�A22v� + �(1� ku�k2 � kv�k2)jku+k � kv+k(3.6) � �(1� ku�k2 � kv�k2)� �ku�k � kv�kku+k � kv+k� � 1� 32 (ku�k2 + kv�k2)1� 12 (ku�k2 + kv�k2)� � 1� 3�21� �2= ��1� 2�21� �2� � 0:

6 ZHENYUE ZHANG, HONGYUAN ZHA AND HORST SIMONHere we have used the fact that kA22k � kAk = �. It follows from kA � u�vT k2F =kAk2F � �2 thatkA� xdyT k2F � kAk2F � �21 �1� 2�21� �2�2 = (1 + ��)kA � u�vT k2F ;where � = 1��1� 2�21� �2�2 = 4�2�1� �4(1� �2)2� ;completing the proof.In practice, the exact largest singular triplet is not available and as we mentionedbefore it may not be even desirable to have it computed to high accuracy since wewill sparsify u and v by discarding some of their nonzero elements anyway duringthe sparsi�cation process. Hence, we need to consider the case when we only haveapproximations of the left and right singular vectors.Theorem 3.2. Let fu; vg be the approximate largest left and right singular vectorsof A and � = �1(A). Use the notation of Step 2.1 of Algorithm SLRA and that ofTheorem 3.1, and assume that ku�k2 + kv�k2 � 2�2. ThenkA� xdyT kF �p1 + �(� + �)kA� u�vT kF ;(3.7)where � is the same as that de�ned in Theorem 3.1 and� = 2� 6�2 � �1� 2�2 �; � = kAv � �uk+ kATu� �vk2� :Proof. De�ne r1 = P1(Av � �u) and r2 = P T2 (ATu � �v). Similarly as in theproof of (3.5), we haveuT+A11v+ = uT�A22v� + �(1� ku�k2 � kv�k2) + r;where r = �[uT+; uT�]r1 + [vT+; vT�]r2�=2 with norm krk � ��. By (3.6) and the in-equality ku+kku+k � p1� 2�2 we obtainjdj � ��1� 2�21� �2�� krkku+kku+k� ��1� 2�21� �2 � �p1� 2�2� :The result (3.7) follows immediately from (2.2) and the following inequality1��1� 2�21� �2 � �p1� 2�2�2 = � +�2� 6�21� �2 � �p1� 2�2� �p1� 2�2� � + �(2� 6�2 � �)1� 2�2 = � + �;completing the proof.Remark. We notice that � de�ned in Theorem 3.1 measures the accuracy of theapproximate left and right singular vectors in a certain relative sense. The results in

Matrix Low-Rank Approximations with Sparse Factors 7Theorem 3.1 say that � = O(�2). Consequently, if � is �xed, there is no point to com-pute u and v to higher accuracy than O(�2). On the other hand, given approximateu and v and the corresponding �, we should choose � to match their accuracy, i.e.,� = O(p�).Now we proceed to estimate the reconstruction error of kA�XkDkY Tk k for thegeneral case with k > 1. The basic idea is to estimate f�2j (Ak)g in terms of f�2j (A)g(recall that Ak = Ak�1�xkdkyTk). The key of our proof is to derive a tight upper boundon Pkj=1 �2j (A � xdyT) in terms of Pk+1j=2 �2j (A). Then we will apply the bounds toAk�1 and xkdkyTk step by step, to obtain an upper bound of kAkk = kA�XkDkY Tk kin terms of f�2j (A0)g with A0 = A. With the assumptions that the left and rightsingular vectors are only approximate, the proof becomes rather unwieldy, and thebounds obtained are less transparent. Therefore, in the following we will assume thatthe left and right singular vectors u and v are computed exactly for each rank-oneSVD approximation in the de
ation process.Notice that if fx; d; yg is the exact largest singular triplet of A, �i(A � xdyT) =�i+1(A), for i = 1; � � � ;minfm;ng � 1, and �i(A� xdyT) = 0 for i � minfm;ng, i.e.,the 2nd largest singular value of A becomes the largest singular value of A�xdyT , the3rd largest singular value of A becomes the 2nd largest singular value of A � xdyT ,and so on. It is easy to see that for any distinct indexes i1; : : : ; ik,kXj=1 �2ij (A� xdyT) = kXj=1 �2ij+1(A):Therefore it is reasonable to expect an O(�) estimation:kXj=1 �2ij (A� xdyT) = kXj=1 �2ij+1(A) +O(�)(3.8)when the triplet (x; d; y) is an O(�) approximation of (u; �; v). We now want tomake (3.8) more precise and prove it rigorously. To this end, we �rst present severaltechnical lemmas.Lemma 3.3. Denote d̂ = uT+A11v+=(ku+k � kv+k)2 and � = �1(A). If ku�k2 +kv�k2 � 2�2, assuming �2 � 1=p5, we then have������ � d̂� ����� � c1�2; c1 = 1 + �2(1� �)2(3.9)Proof. By (3.4) and (3.5) we haved̂ = � + uT�A22v� � �(ku�k2kv�k2)ku+k2kv+k2 :Hence jd̂� �j � � ku�kkv�k+ ku�k2kv�k2ku+k2kv+k2 :(3.10)Writing ku�k = p2a cos(�), kv�k = p2a sin(�) for certain � 2 [0; �=2] and 0 < a � �,and furthermore, denoting t = a2 sin(2�) 2 [0; a2], we haveku�kkv�k+ ku�k2kv�k2ku+k2kv+k2 = a2 sin(2�) + a4 sin2(2�)1� 2a2 + a4 sin2(2�) = t+ t21� 2a2 + t2 :

8 ZHENYUE ZHANG, HONGYUAN ZHA AND HORST SIMONIt can be shown that the function g(t) � (t + t2)=(1 � 2a2 + t2) is monotonicallyincreasing in the interval [0; a2] if a2 � �2 � 1=p5. Therefore,ku�kkv�k+ ku�k2kv�k2ku+k2kv+k2 � g(a2) = a2 + a41� 2a2 + a4(3.11) � �2 + �41� 2�2 + �4 = c1�2:Equation (3.9) then follows from (3.10).Lemma 3.4. Let fu; � = �1(A); vg be the largest singular triplet of A. DenoteE = u�vT � xdyT . If ku�k2 + kv�k2 � 2�2, assuming �2 < 1=3, thenkEkF � �1(A)(p2 + �2)�(3.12)and j�j(A� xdyT)� �j+1(A)j � �1(A)(p2 + �2)�:(3.13)Proof. Let ĥ = (� � d̂)=� with d̂ de�ned in Lemma 3.3. Then d̂ = �(1� ĥ) andP1EP T2 = � � ĥkv+ku+ kv�ku+kv+ku� kv�ku� � � v+=kv+k 00 v�=kv�k �T :Hence, by (3.10) we obtain thatkEk2F=�2 = (ĥ2ku+k2 + ku�k2)kv+k2 + kv�k2= ĥ2ku+k2kv+k2 + ku�k2 + kv�k2 � ku�k2kv�k2� ku�k2 + kv�k2 + ku�k2kv�k2� (1 + ku�kkv�k)2ku+k2kv+k2 � 1�= ku�k2 + kv�k2 + ku�k2kv�k2�ku�k+ kv�kku+kkv+k �2� 2�2 + �4 4�2(1� �2)2� �2(p2 + �2)2:Here we have used the following inequality�ku�k+ kv�kku+kkv+k �2 � � 2�1� �2�2 ;which is valid for �2 � 1=3. This inequality can be proved using the same techniqueas when we prove (3.11). The standard perturbation bounds for singular values [5,Section 8.6.1] now give�j(A� xdyT) = �j(A� u�vT +E)� �j(A� u�vT) + kEk= �j+1(A) + kEk� �j+1(A) + �1(A)�p2 + �2��;

Matrix Low-Rank Approximations with Sparse Factors 9completing the proof.Remark. It can be shown that if ku�k � � and kv�k � �, thenj�j(A� xdyT)� �j+1(A)j � �1(A)�1 + 2�p1� �2� �:Using the well-known Wielandt-Hofmann Theorem [5, Section 8.6.1] and Lemma 3.4,one can prove that nXi=k �2j (A� xdyT)!1=2 � nXi=k+1 �2j (A)!1=2 + �1(A)�p2 + �2��:Therefore it is not di�cult to show thatkA�XkDkY Tk kF � (1 + ck�)kA� Uk�kV Tk kF ;(3.14)with ck = p2 kXi=1 �i(A)=(nXi=k+1 �2j (A))1=2 +O(�):(3.15)However, the coe�cient ck seems to give a less tight bound. To derive a much tighterbound for kA�XkDkY Tk kF , we need the following key lemma.Lemma 3.5. Use the notation of Step 2.1 of Algorithm SLRA, and assume thatku�k2 + kv�k2 � 2�2 with �2 < 1=3. Then for any distinct indexes i1; : : : ; ik,kXj=1 �2ij (A� xdyT) � kXj=1 �2ij+1(A) + �1(A)�2(A)�+ c�21(A)�2;(3.16)where c = c2 for k = 1 and c = 2c2 for k > 1, and c2 = (1 + c1�2)2(3 +p2c1�) withc1 de�ned in Lemma 3.3.Proof. Let the SVD of A be A = U�V T with � = diag(�1; � � � ; �n). To simplifythe notation, denote u = u1, v = v1, � = �1, and �2 = diag(�2; � � � ; �n). DenoteB = UT (A � xdyT)V . We also assume that ku�k � kv�k which implies ku�k � �.(Otherwise we can consider BBT instead of BTB in what follows.) The proof of thislemma consists of the following three parts.1) We �rst show that the matrix BTB is a rank-3 modi�cation of diag(0;�22),i.e., BTB = diag(0;�22) + F; rank(F) � 3:(3.17)Thus it follows from [16, Page 202] that for distinct indexes i1; : : : ; ik,kXj=1 �ij (BTB) � kXj=1 �ij (diag(0;�22)) + kXj=1 �j(F)with the notation �j(�) denoting the j-th largest eigenvalue of a symmetric matrix.To write the above in another way, we havekXj=1 �2ij (A� xdyT) � kXj=1 �2ij+1(A) + kXj=1 �j(F):(3.18)

10 ZHENYUE ZHANG, HONGYUAN ZHA AND HORST SIMONTo this end, partitionP1U = �� u+u� � ; U2� ; P2V = �� v+v� � ; V2� ; � = � � 00 �2 � ;(See Step 2.1 of SLRA for the de�nition of the permutation matrices P1 and P2.)It can be veri�ed thatUTxdyTV = d̂�e1eT1 � e1wT2 � w1eT1 + w1eT2 �;where w1 = (P1U)T � 0u� � = 24 ku�k2UT2 � 0u� � 35 � � w11w21 � ;w2 = (P2V)T � 0v� � = 24 kv�k2V T2 � 0v� � 35 � � w12w22 � :Furthermore, we havew11 = ku�k2 = kw1k2 � �2; w12 = kv�k2 = kw2k2 � 2�2:(3.19)Therefore, we can writeB � UT (A� xdyT)V= diag(0;�2) + d̂�he1eT1 + e1wT2 + w1eT1 � w1eT2 �= diag(0;�2) + d̂[e1; w1] � h 11 �1 � [e1; w2]T ;i.e., B is a rank-2 modi�cation of diag(0;�2). Hered̂ = d=(ku+k � kv+k); h = (� � d̂)=d̂:To show that BTB is a rank-3 modi�cation of diag(0;�22), letw3 = � 0�2w21 � ; �1 = � h 11 �1 �� 1 w11w11 w11 �� h 11 �1 � :Then it can be veri�ed thatBTB = diag(0;�22) + [e1; w2; w3]�[e1; w2; w3]T � diag(0;�22) + F;where� = d̂24 d̂�1 � 1�1 �� 1 �1 � 0 35 = d̂24 d̂(h2 + 2hw11 + w11) d̂h(1� w11) 1d̂h(1� w11) d̂(1� w11) �11 �1 0 35 :Therefore, (3.17) holds.

Matrix Low-Rank Approximations with Sparse Factors 112) We now prove that the matrix F has a negative eigenvalue, which impliesthat the last term of (3.18) is a sum of at most two largest eigenvalues of F . Firstrank([e1; w2; w3]) � 2 since e1 is orthogonal to w3. Without loss of generality, weassume that rank([e1; w2; w3]) = 3. (The case when rank([e1; w2; w3]) = 2 is simplerand can be similarly handled.) Thus by Sylvester's Law of Inertia [5, Theorem 8.1.17],the number of positive eigenvalues of F is equal to the number of positive eigenvaluesof �. Therefore it is enough to show that � has only two positive eigenvalues. Clearly,� has at least one positive eigenvalue since it has a positive diagonal element. It can beshown that the determinant of � is negative: det(�) = �d̂2(1 + h)2 < 0. It impliesthat � has one and only negative eigenvalue because � is obviously not negativede�nite. Therefore, � has exactly two positive eigenvalues, and so does F . Hence wecan write (3.18) askXj=1 �2ij (A� xdyT) � kXj=1 �2ij+1(A) + minfk;2gXj=1 �j(F):(3.20)3) We �nally derive upper bounds for �1(F) and �2(F) which lead to the inequal-ity (3.16). To this end, we writeF = d̂[e1; w3] � 0 11 0 � [e1; w3]T ++[e1; w2; w3]" d̂2�2 [0;�d̂]T[0;�d̂] 0 # [e1; w2; w3]T � H + ~F :It is easy to see that �(H) = fd̂kw3k; 0; : : : ; 0;�d̂kw3kg. By (3.9) and the inequalitykw3k � �2�, we thus have�1(F) � d̂kw3k+ k ~Fk � �1�2�(1 + c1�2) + k ~Fk;(3.21) �2(F) � k ~Fk:(3.22)To estimate k ~Fk, we normalize w2 and w3, and let ŵ2 = w2=kw2k and ŵ3 =w3=kw3k. It is easy to see thatk[e1; ŵ2; ŵ3]k � p2; k ~Fk � 2kF̂kwith d̂h = � � d̂, andF̂ � (f̂ij)3i;j=1= 24 (� � d̂)2 + d̂�2� � d̂�w11 d̂(� � d̂)(1� w11)kw2k 0d̂(� � d̂)(1� w11)kw2k d̂2(1� w11)kw2k2 �d̂kw2k � kw3k0 �d̂kw2k � kw3k 0 35 :By Lemma 5.2 of [17] and the fact that f̂13 = f̂31 = f̂33 = 0, we havekF̂k � max�jf̂11j;

� f̂22 f̂23f̂32 f̂33 �

�+ jf̂12j� maxnjf̂11j; jf̂22j+ jf̂23jo+ jf̂12j:

12 ZHENYUE ZHANG, HONGYUAN ZHA AND HORST SIMONBy (3.9) and (3.19), it is easy to see that kF̂k = O(�2). Furthermore, it can be veri�edthat jf̂11j � jf̂22j+ jf̂23j � 3�2(1 + c1�2)2�2; jf̂12j � p2c1�2(1 + c1�2)�3;which leads to kF̂k � (1 + c1�2)2(3 +p2c1�)�2�2 � c2�2�2;and �1(F) � �1�2�+ c2�2�2; �2(F) = c2�2�2:Combining the above bounds with (3.20) yields the result (3.16).Now we are ready to prove our main theorem.Theorem 3.6. Use the notation in Step 2.1 of Algorithm SLRA, and assume ineach iteration of Step 2.1 ku�k2 + kv�k2 � 2�2 with �2 < 1=3. ThenkA� Uk�kV Tk kF � kA�XkDkY Tk kF �p1 + bk� kA� Uk�kV Tk kF ;where bk = Pkj=1 �j(A)�j+1(A)Pnj=k+1 �2j (A) +O(�):Proof. Let Ak = A�XkDkY Tk with A0 = A, andXk = [x1; : : : ; xk]; Dk = diag(d1; : : : ; dk); Yk = [y1; : : : ; yk]:Then Ak = Ak�1 � xkdkyTk , where xk and yk are the sparsi�ed version of the largestleft and right singular vectors u(k�1) and v(k�1) of Ak�1, respectively. Speci�cally,we choose permutation matrices P (k�1)1 and P (k�1)2 such thatP (k�1)1 u(k�1) = " u(k�1)+u(k�1)� # ; P (k�1)2 v(k�1) = " v(k�1)+v(k�1)� #with ku(k�1)� k2 + kv(k�1)� k2 � 2�2. Thenxk = (P (k�1)1)T � u(k�1)+0 � =ku(k�1)+ k; yk = (P (k�1)2)T � v(k�1)+0 � =kv(k�1)+ k:Since Ak = A�XkDkY Tk , applying Lemma 3.5 to Ak = Ak�1 � xkdkyTk , we havekA�XkDkY Tk k2F = nXj=1 �2j (Ak)(3.23) � nXj=2 �2j (Ak�1) + �1(Ak�1)�2(Ak�1)�+ c�21(Ak�1)�2� nXj=k+1 �2j (A) + k�1Xj=0 �1(Aj)�2(Aj)�+ c k�1Xj=0 �21(Aj)�2:

Matrix Low-Rank Approximations with Sparse Factors 13On the other hand, by Lemma 3.4, we have with c3 = p2 + �2�1(Aj) � �2(Aj�1) + c3�1(Aj�1)�(3.24) � �3(Aj�2) + c3(�1(Aj�2) + �1(Aj�1))�� : : :� �j+1(A) + c3 j�1Xi=0 �1(Ai)�:Let sj =Pj�1i=0 �1(Ai). Then by (3.24)sj = �1(Aj�1) + sj�1 � �j(A) + (1 + c3�)sj�1(3.25) � �j(A) + (1 + c3�)(�j�1(A) + (1 + c3�)sj�2)� : : :� jXi=1(1 + c3�)j�i�i(A):Substituting (3.25) into (3.24) gives�1(Aj) � �j+1(A) + c3 jXi=1(1 + c3�)j�i�i(A)� � �j+1(A) + �j�;where �j = c3Pji=1(1 + c3�)j�i�i(A). Similarly, we have�2(Aj) � �j+2(A) + �j�:Therefore, k�1Xj=0 �1(Aj)�2(Aj)(3.26) � kXj=1 ��j(A)�j+1(A) + (�j(A) + �j+1(A) + �j�1�)�j�1��;and k�1Xj=0 �21(Aj) � kXj=1 ��2j (A) + 2�j(A)�j�1�+ �2j�1�2�:(3.27)Combining (3.23), (3.26) and (3.27) we obtain thatkA�XkDkY Tk kF � nXj=k+1 �2j (A) + kXj=1 �j(A)�j+1(A)�+~bk�2= (1 + bk�)kA� Uk�kV Tk k2F ;where ~bk = kXj=1 �c�2j (A) + ((1 + 2c�)�j(A) + �j+1(A) + (1 + c�)�j�1�)�j�1	 ;

14 ZHENYUE ZHANG, HONGYUAN ZHA AND HORST SIMON

0 10 20 30 40 50 60 70 80 90 100
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
med, epsilon = 0.1

k

(1+c
k
*epsilon)−1

(1+b
k
*epsilon)−1/2

0 10 20 30 40 50 60 70 80 90 100
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6
med, epsilon = 0.1

k

R
e

la
ti
v
e

 R
rr

o
rs

excat error
upper bound (b)
upper bound (c)

Fig. 1. (1 + ck � �)�1 and (1 + bk � �)�1=2 (left) and the relative errors (right).completing the proof.The bound proved in the above theorem usually is much tighter than the bound in(3.14). In Figure 1, for various k, we plot the quantities (1+ ck�)�1 and (1+ bk�)�1=2with the O(�) terms omitted for the matrix med (cf. Section 5) on the left and therelative error errbest(k) = kA� bestk(A)kFkAkF ;and the upper bounds(1 + ck�)errbest(k) and (1 + bk�)1=2errbest(k);on the right.4. Computational Variations. In this section, we �rst discuss several compu-tational variations of Algorithms SLRA, in particular we look at two approaches forsparsifying vectors in Step 2.1 of Algorithm SLRA. We �rst brie
y discuss how to�nd approximations to the largest singular triplet of a matrix.Computing Largest Singular Triplets. As we mentioned in Section 2, the largestsingular triplet fu; �; vg does not need to be computed to high accuracy because asparsi�cation process that follows will introduce errors by discarding certain nonzeroelements of u and v. There are several approaches for approximating the largestsingular triplets such as the power method and Lanczos bidiagonalization process [5,13]. Using the power method, we suggest performing several steps of power iterationas follows, v (ATA)�v0;v v=kvk2;u Av=kAvk2:where v0 is an initial guess, for example, v0 = (1; � � � ; 1)T , � is a small integer, forexample, � = 3.For Lanczos bidiagonalization, we can run several Lanczos iterations to generate apair of orthogonal bases fu1; � � � ; u�g and fv1; � � � ; v�g, and a lower bidiagonal matrix

Matrix Low-Rank Approximations with Sparse Factors 15B� satisfying A[v1; � � � ; v�] = [u1; � � � ; u�]B� + b�u�+1;AT [u1; � � � ; u�] = [v1; � � � ; v�]BT� :The largest singular vectors a and b of B� will be used to obtain approximations uand v: v = [v1; � � � ; v�]a; u = [u1; � � � ; u�]b:Sorting and Sparsi�cation. This corresponds to how to partition the computedapproximate singular vectors u and v for later sparsi�cation process. By Theorems 3.1and 3.2 the reconstruction error kA� xdyT kF of the sparse rank-one approximationdepends on the size of the discarded sections ku�k2 and kv�k2. Therefore it makessense to sort vectors u and v in decreasing order by their absolute values so thatthe number of discarded elements is largest under the constraints ku�k2 � � andkv�k2 � �, or ku�k22 + kv�k22 � 2�2. In particular, we �nd permutations P1 and P2such that ~u � P1u = � u+u� � ; ~v � P2v = � v+v� � withj~u1j � j~u2j � � � � � j~umj; j~v1j � j~v2j � � � � � j~vnj:Let ku and kv be the lengths of sections u+ and v+, respectively. Thus u+ = ~u(1 : ku)and v+ = ~v(1 : kv). We then choosex = P T1 � ~u(1 : ku)0 � =k~u(1 : ku)k; y = P T2 � ~v(1 : kv)0 � =k~v(1 : kv)k:The integers ku and kv can be determined by the following two di�erent schemes.� Separated scheme. In this approach, we sort the elements of u and vseparately, and ku and kv are de�ned byku = minnk ��� kXj=1 ~u2j � 1� �2o; kv = minnk ��� kXj=1 ~v2j � 1� �2ofor a given tolerance �.� Mixed scheme. Another approach is to set w = [uT ; vT]T and �nd a per-mutation P such that Pw = ~w, j ~w1j � j ~w2j � � � � � j ~wm+nj. We determinekw such that kw = minnk � k0 ��� kXj=1 ~w2j � 2�2o;where k0 is the smallest integer such that the section w(1 : k0) contains bothu-components and v-components. Obviously, the order of the u-componentsof vector ~w implies the permutation P1. So does the order of the v-componentsfor P2. Therefore the main section ~w(1 : kw) also determine ~u(1 : ku) and~v(1 : kv), where ku and kv are, respectively, the numbers of u-componentsand v-components of ~w(1 : kw).

16 ZHENYUE ZHANG, HONGYUAN ZHA AND HORST SIMONRemark. In general, our experiments show that the mixed scheme performsbetter than the separated scheme.Choice of tolerance �. At each iteration step of Algorithm SLRA, the tolerance� can be a pre-determined constant or be chosen dynamically during the iterationprocess. We will use, for variable tolerance, at the k-th iteration�k = kAk�1kFkAkF �;which depends on the approximation computed by previous iterations.Choice of k. Notice that the norm of error matrix Ak at step k can be written askAkk2F = kA�XkDkYkk2F = kAk2F � kXj=1 d2j :In fact, we have kAkk2F = kAk�1k2F � d2k:It is quite convenient to use this recurrence as a stopping criterion for AlgorithmSLRA: kAkkF � tolfor the given user-speci�ed tolerance tol.Self-correcting Mechanism. This is certainly an area that deserves further re-search, and in the following we can only touch the tip of the iceberg. When weuse a rank-one matrix u�vT that is constructed from the exact largest singulartriplet fu; �; vg of A, the di�erence A � u�vT will not have any components inthe two one-dimensional subspaces spanned by u and v, respectively. Notice thatkA�u�vT k2F = kAk2F ��2, and the amount of reduction in the Frobenius norm is thelargest possible by a rank-one modi�cation. Now when we use an inaccurate rank-oneapproximation xdyT , in general, it is true that Â � A� xdyT will have some compo-nents left in the directions of u and v. Also kÂk2F = kAk2F � d2, and the reductionin Frobenius norm will be smaller. The question now is the following: if we computethe rank-one approximation x̂d̂ŷT for Â, will x̂d̂ŷT pick up some of the componentsin u and v that are left by the previous rank-one approximation xdyT ? The answerseems to be yes even though we do not have a formal proof. This indicates that Al-gorithm SLRA has a self-correcting mechanism: errors made in early de
ation stepscan be corrected by later de
ation steps. We now give an example that illustrate thisphenomenon. Table 4 lists the �rst 10 diagonals fdjg and the singular values f�jgof matrix A, respectively. In this example, those steps j for which dj > �j show theself-correcting process at work.A combinatorial optimization problem. Now we reexamine the optimization prob-lem (2.1) for k = 1. We can impose the following constraints on the number ofnonzeros of x and y: nnz(x) = nx; nnz(y) = ny, where nx � m and ny � n are�xed. Let i1; : : : ; inx and j1; : : : jny be the indexes of the nonzero elements of x andy, respectively. Then it is easy to see that the optimization problem (2.1) is reducedto

Matrix Low-Rank Approximations with Sparse Factors 17Table 1Self-correction phenomenonj dj �j1 4.5595e+05 4.5808e+052 3.8998e+05 4.5762e+053 4.5482e+05 4.5761e+054 3.7309e+05 3.9093e+055 4.4721e+05 3.9050e+056 3.5648e+05 3.9049e+057 2.2148e+05 2.2090e+058 1.8609e+05 2.2046e+059 2.3341e+05 2.2044e+0510 2.2075e+05 1.1472e+05minx̂2Rnx ;ŷ2Rny kA([i1; : : : ; inx]; [j1; : : : ; jny])� x̂dŷT kF ;(4.28)where ~A � A([i1; : : : ; inx]; [j1; : : : jny]) is the submatrix of A consists of the intersectionof rows i1; : : : ; inx and columns j1; : : : jny . Therefore, by Theorem 1.1 we need to �ndthe largest singular triplet of ~A. Hence, the optimization problem (2.1) for k = 1 isequivalent to the following problem:Find nx rows and ny columns of A such that the largest singularvalue of ~A is maximized.This is a combinatorial optimization problem, and we do not know any good, i.e.,polynomial-time, solution method for it. Step 2.1 of Algorithm SLRA does seem toprovide an heuristic for its solution. Now we give an example to illustrate this point.Example. Consider the following matrixA = 26666664 1 0 0 1 01 0 1 1 11 0 0 1 00 0 1 1 00 1 0 1 10 0 0 1 0
37777775 :The goal is to compare the computed sparse low-rank approximation with the optimalsolution of the combinatorial optimization problem (4.28) computed by exhaustivesearch.We �rst compute the sparse approximation XkDkY Tk for k = 2 using AlgorithmSLRA with � = 0:3 and � = 4 for computing the approximate largest singular tripletusing Lanczos bidiagonalization. The computed vectors xi and yi have the numbersof nonzeros listed below.nnz(x1) = 5; nnz(y1) = 4; nnz(x2) = 3; nnz(y2) = 3:Next we compute the best rank-one approximation u1s1vT1 to A with the constraintsnnz(u1) = nnz(x1) and nnz(v1) = nnz(y1), and then the best rank-one approximationu2s2vT2 to matrix A� u1s1vT1 with the constraints nnz(u2) = nnz(x2) and nnz(v2) =

18 ZHENYUE ZHANG, HONGYUAN ZHA AND HORST SIMONnnz(y2). The above two steps for computing ui and vi are carried out using exhaustivesearch. Below we list the computed components of vectors xi, yi, ui, and vi. Thetwo approximations give the same sparsity patterns, i.e., wherever xi (or yi) has azero element, ui (or vi) also has a zero element in the same position, and vice versa.However, notice that the values of nonzero elements are di�erent but very close.x1 x2 u1 u20:4058 0:3245 0:4111 0:31180:6146 0 0:6362 00:4058 0:3245 0:4111 0:31180:3583 0 0:3587 00:4058 �0:8885 0:3587 �0:89750 0 0 0y1 y2 v1 v20:4508 0:5423 0:4905 0:50660 �0:6170 0 �0:63220:3075 0 0:3346 00:7734 0 0:7318 00:3226 �0:5702 0:3346 �0:58635. Numerical Experiments. In this section, we present several numerical ex-periments to illustrate the e�ectiveness and e�ciency of our approach for computingsparse low-rank approximations. We will compare the performance of AlgorithmSLRA with that of SVD and the approach proposed in [15] with respect to the fol-lowing two issues:1) the reconstruction errors; and2) the computational complexity and storage required.For the numerical experiments, we generate a collection of test matrices which arelisted below together with some relevant statistics: matrices 3, 4, 5 and 6 are term-document matrices from SMART information retrieval system, and the rest of thematrices are selected from Matrix Market [2, 9]. We do not claim that the collectionis comprehensive. Matrix m n nnz(A) Density(%)1 ash958 958 292 19196 0.682 illc1033 1033 320 4732 1.433 cisi 5081 1469 66241 0.894 cacm 3510 3204 70339 0.635 med 5504 1033 51096 0.906 npl 4322 11429 224918 0.467 watson4 467 468 2836 1.308 orsirr2 886 886 5970 0.769 e20r1000 4241 4241 131430 0.73Some explanation of the notation we used is in order here: m and n represent therow and column dimensions, respectively, of the given matrix. As used before, nnz(A)

Matrix Low-Rank Approximations with Sparse Factors 19
0 10 20 30

0.985

0.99

0.995

1
ash958

0 20 40 60

0.2

0.4

0.6

0.8

1
illc1033

0 20 40 60

0.98

0.985

0.99

0.995

1
cisi

0 20 40 60

0.97

0.98

0.99

1
cacm

0 20 40 60 80

0.98

0.99

1
med

0 20 40

0.985

0.99

0.995

1
npl

0 50 100 150

0.2

0.4

0.6

0.8

1
watson4

0 100 200 300

0.6

0.7

0.8

0.9

1
orsirr2

0 50 100 150

0.99

0.995

1
e20r1000

Fig. 2. The computed er(k) (solid lines) and the lower bounds (1 + bk�)�1=2 (dashed lines).denotes the number of nonzero elements of A. Density is computed as nnz(A)=(mn),the percentage of nonzero elements of a matrix.In order to compare our algorithm with SPQR in [15], for each matrix A, we �rstuse SPQR to compute a rank-k approximation B = AcMATr . We use k = 300 ifmin(m;n) > 500, otherwise we use k = 100. Then we let tol(A) = kA�BkF , we seekto �nd a low-rank approximation using SLRA such thatkA�XkDkY Tk kF � tol(A):Test 1. We compare the low-rank approximations computed by Algorithm SLRAwith constant tolerance � = 0:1 and those computed by SVD. The dimension used forLanczos bidiagonalization for computing the approximate largest singular vectors is� = 4 (See the de�nition of � in the previous section). To illustrate the reconstructionerror kA�XkDkY Tk kF , we use the error ratio er(k) de�ned byer(k) = kA� bestk(A)kFkA�XkDkY Tk kFto measure the e�ectiveness of Algorithm SLRA. It is easy to see that 0 � er(k) � 1.The larger the error ratio is, the more e�ective SLRA is. Below we list the errorratios of SLRA with constant tolerance � = 0:1 using the separated sorting scheme.The rank k is chosen to be 5 � 20% of the size l = min(m;n) of a given matrix A.We also computed the average error ratio de�ned asAverage = 1k kXi=1 er(i);where k is the smallest integer satisfying kA�XkDkY Tk kF � �.

20 ZHENYUE ZHANG, HONGYUAN ZHA AND HORST SIMON

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

50

100

150

200

250

300

350

400

epsilon

R
a

n
k

k

Variable Separate SLRA

ash958
illc1033
cisi
cacm
med
npl
watson4
orsirr2
e20r1000

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

1

2

3

4

5

6
x 10

5

epsilon

T
o

ta
l N

u
m

b
e

r
o

f
N

u
n

ze
ro

s
o

f
X

 a
n

d
 Y

Variable Separate SLRA

ash958
illc1033
cisi
cacm
med
npl
watson4
orsirr2
e20r1000

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

50

100

150

200

250

300

350

400

epsilon

R
a

n
k

k

Variable Mixed SLRA

ash958
illc1033
cisi
cacm
med
npl
watson4
orsirr2
e20r1000

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

1

2

3

4

5

6
x 10

5

epsilon

T
o

ta
l N

u
m

b
e

r
o

f
N

u
n

ze
ro

s
o

f
X

 a
n

d
 Y

Variable Mixed SLRA

ash958
illc1033
cisi
cacm
med
npl
watson4
orsirr2
e20r1000

Fig. 3. Plots for ranks (left) and numbers of nonzero elements of Xk and Yk (right) vs startingepsilon for the variable tolerance, separated (top) and mixed (bottom) sorting approaches.Matrix k= 5% 10% 15% 20% Averageash958 0.9946 0.9896 0.9876 0.9845 0.9908illc1033 0.3622 0.9160 0.9226 0.8984 0.8595cisi 0.9866 0.9771 0.9690 0.9612 0.9778cacm 0.9774 0.9625 0.9427 0.9221 0.9596med 0.9882 0.9790 0.9699 0.9617 0.9790watson4 0.9784 0.9374 0.4833 0.3166 0.7809orsirr2 0.9217 0.8942 0.9136 0.9206 0.9274For these matrices, Theorem 3.6 gives tight bounds for the ratios. Figure 2 plots,with respect to k, the lower bounds (1+ bk�)�1=2 (dashed lines) given in Theorem 3.6and the ratio quantities er(k) (solid line) computed by the separated sorting SLRAwith � = 0:1 for all the nine matrices. These examples show that SLRA has very higherror ratios for most of the test matrices, especially for the term-document matrices.Test 2. In general, the mixed sorting scheme gives a smaller number of nonzeroelements, for the sparse factors Xk and Yk, i.e., less storage required, than the sep-arated sorting scheme if we use the same tolerance sequence while the rank k of thelow-rank approximations computed by the di�erent schemes are about the same. We

Matrix Low-Rank Approximations with Sparse Factors 21computed the low-rank approximations using Algorithm SLRA with the same variabletolerance scheme for both the separated and mixed sorting schemes. Di�erent startingtolerances � = 0.05:0.05:0.5 are used for each test matrix. In Figure 3 we plot theranks (left) and the total number of nonzero elements of Xk and Yk (right) computedby SLRA with separated (top) and mixed (bottom) sorting schemes. For each testmatrix, the ranks computed by the two sorting schemes are about the same whilemixed sorting scheme gives smaller number of nonzero elements, this is especially thecase for the starting tolerances around � = 0:15.Test 3. In this test we compare, respectively, the ranks of the low-rank approx-imations, the computation cost in
ops and storage required for SVD, SPQR, andSLRA using variable tolerance and mixed sorting scheme. For SLRA, we use � = 0:1as the starting tolerance and � = 6 iterations for Lanczos bidiagonalization. The low-rank approximations computed by the three approaches have the same reconstructionerrors for each test matrix. In general, as we mentioned before, SVD produces densefactors even when A is sparse. Therefore the low-rank approximation computed bySVD requires at least (m+ n+ 1)k storage for its associated factors. For SPQR, therank k of the low-rank approximation Bk = AcMATr , is usually quite large comparedwith the rank of the optimal low-rank approximation generated by SVD. Since thematrix M is generally dense, the storage required is dominated by M resulting inlarger than k2 storage requirement. In contrast, SLRA can produce low-rank approx-imations with small rank k and good degree of sparsity of the factorsXk and Yk. (Thenumber of nonzeros can be reduced by increasing the starting tolerance �, which alsoincreases the
ops and ranks.) We list below the comparison for the term-documentmatrices in the test collection.atrix rank total nnz
opscisi TSVD 68 449412 6925863163SLRA 72 217401 523406959SPQR 300 129720 568382817cacm TSVD 63 426951 5390479001SLRA 67 216982 478032905SPQR 300 133784 463854304med TSVD 79 522664 9598485598SLRA 84 278456 658852943SPQR 300 120444 469695010npl TSVD 41 647472 6208537332SLRA 44 384118 616205165SPQR 300 227567 588513394However, we should mention that the performance of SLRA is not as good asSPQR when the matrix A is close to a highly rank-de�cient matrix. For example, letA be the matrix illc1033 in the test collection. We compute, using SPQR, a rank-100approximation B = AcMATr . The storage required (the number of nonzeros) for thecomputed low-rank approximation is about 20% of that for the best approximationB� computed by SVD that achieves the same reconstruction error. SLAP with � = 0:1gives an approximation Bk that has the same reconstruction error as that of SPQRand the storage required is 85% of that for B� though the rank of Bk is close to theoptimal rank and much smaller than the rank of B. SPQR also requires less
opsfor computing the low-rank approximation. In general, SPQR is very e�ective forsparse matrices that are close to highly rank-de�cient and the rank of the low-rank

22 ZHENYUE ZHANG, HONGYUAN ZHA AND HORST SIMONapproximation can be predetermined. However, SPQR is not convenient to use if theuser just impose an upper bound on reconstruction error.6. Concluding Remarks. We have presented algorithms for computing matrixlow-rank approximations with sparse factors. We also gave a detailed error analysiscomparing the reconstruction errors for the low-rank approximations computed bySVD and the low-rank approximations computed by our sparse low-rank algorithms.Our algorithms are
exible in the sense that users can balance the tradeo� of highsparsity level of the computed low-rank factors and the reduced reconstruction error.Several issues deserve further investigation: 1) we need to develop better ways forcomputing sparse rank-one approximations. As we mentioned, for example, if we �xthe number of nonzero elements in x and y, say p and q, then min kA � xdyT kF isequivalent to the following combinatorial optimization problem: �nd p rows and qcolumns of A such that the largest singular value of their intersection is maximized.We are in the process of �nding heuristics for solving this problem and investigatingtheir relationships to the sorting approach of Algorithm SLRA. 2) Once a low-rankapproximation Ak is computed, a certain re�nement procedure needs to be developedto reduce its reconstruction error and/or the number of nonzeros of its sparse factors.3) It will also be of great interest to consider reconstruction errors in norms otherthan k � kF .Acknowledgment. Part of this work was done while the �rst two authors werevisiting National Energy Research Scienti�c Computing Center, Lawrence BerkeleyNational Laboratory. The authors also want to thank the anonymous referees fortheir comments and suggestions that greatly improved the presentation of the paper.REFERENCES[1] M.W. Berry, S.T. Dumais and G.W. O'Brien. Using linear algebra for intelligent informationretrieval. SIAM Review, 37:573-595, 1995.[2] Cornell SMART System, ftp://ftp.cs.cornell.edu/pub/smart.[3] C. Couvreur and Y. Bresler. On the optimality of backward greedy algorithm for the subsetselection method. SIAM J. Matrix Analysis and Applications, 21:797{808, 2000.[4] M. Evans, Z. Gilula and I. Guttman. Latent class analysis of twy-way contingency tables byBayesian methods. Biometrika, 76:557{563, 1989.[5] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University Press,Baltimore, Maryland, 3nd edition, 1996.[6] T. Hofmann. Probabilistic Latent Semantic Indexing. Proceedings of the 22nd InternationalConference on Research and Development in Information Retrieval (SIGIR'99), 1999.[7] T. Kolda and D. O'Leary. A semidiscrete matrix decomposition for latent semantic indexingin information retrieval. ACM Trans. Information Systems, 16:322-346, 1998.[8] D. Lee and S. Seung. Learning the parts of objects by non-negative matrix factorization.Nature, 401:788{791, 1999.[9] Matrix Market. http://math.nist.gov/MatrixMarket/.[10] B. Natarajan. Sparse approximate solutions to linear systems. SIAM J. Computing, 24:227{234,1995.[11] D. P. O'Leary and Shmuel Peleg. Digital Image compression by outer product expansion. IEEETransactions on Communications, 31:441{444, 1983.[12] Haesun Park, Lei Zhang, and J. Ben Rosen. Low Rank Approximation of a Hankel Matrix byStructured Total Least Norm. TR 97-043, Department of Computer Science, University ofMinnesota, 1997.[13] B.N. Parlett. The Symmetric Eigenvalue Problem. SIAM Press, Philadelphia, 1998.[14] H. Simon and H. Zha. Low-rank matrix approximation using the Lanczos bidiagonalizationprocess. SIAM Journal of Scienti�c Computing, 21:2257{2274, 2000.[15] G.W. Stewart. Four algorithms for the e�cient computation of truncated pivoted QR approx-imation to a sparse matrix. CS report, TR-98-12, University of Maryland, 1998.[16] G.W. Stewart and J. G. Sun. Matrix Perturbation Theory. Academic Press, 1990.

Matrix Low-Rank Approximations with Sparse Factors 23[17] H. Zha and Z. Zhang. Matrices with low-rank-plus-shift structure: partial SVD and latentsemantic indexing. SIAM Journal on Matrix Analysis and Applications, 21:522{536, 1999.

