LOW-RANK APPROXIMATIONS WITH SPARSE FACTORS I:
BASIC ALGORITHMS AND ERROR ANALYSIS

ZHENYUE ZHANG*, HONGYUAN ZHA' AND HORST SIMON?

Abstract. We consider the problem of computing low-rank approximations of matrices. The
novel aspects of our approach are that we require the low-rank approximations be written in a
factorized form with sparse factors and the degree of sparsity of the factors can be traded off for
reduced reconstruction error by certain user determined parameters. We give a detailed error analysis
of our proposed algorithms and compare the computed sparse low-rank approximations with those
obtained from singular value decomposition. We present numerical examples arising from some
application areas to illustrate the efficiency and accuracy of our algorithms.

Key words: low-rank matrix approximation, singular value decomposition, sparse
factorization, perturbation analysis
AMS subject classifications. 15A18, 15A23, 65F15, 65F50

1. Introduction. We consider the problem of computing low-rank approxima-
tions of a given matrix A € R"™*" which arises in many applications areas; see
[5, 14, 17] for a few examples. The theory of singular value decomposition (SVD)
provides the following characterization of the best low-rank approximations of A in
terms of Frobenius norm || - || [5, Theorem 2.5.3].

THEOREM 1.1. Let the singular value decomposition of A € R™*" be A=UXVT,

Y= diag(”l; R Umin(mm)): 012 ...2 Omin(m,n)>
and U and V orthogonal. Then for 1 < k < min(m,n),

min(m,n)
Z 0? = min{ ||A — B||% | rank(B) < k}.
i=k+1

The minimum is achieved with besty(A) = Uy diag(o, . .., or)V,', where Uy and Vj

are the matrices formed by the first k columns of U and V', respectively.

For any low-rank approximation B of A, we call ||A — B||r the reconstruction
error of using B as an approximation of A. By Theorem 1.1, bestj(A) has the
smallest reconstruction error in Frobenius norm among all the rank-%k approximations
of A. In certain applications, it is desirable to impose further constraints on the
low-rank approximation B in addition to requiring that it be of low-rank. Consider
the case where, for example, the matrix A is sparse; it is generally not true that

*

Department of Mathematics, Zhejiang University, Yuquan Campus, Hangzhou, 310027, P.
R. China. zyzhang@math.zju.edu.cn, and National Energy Research Scientific Computing Center,
Lawrence Berkeley National Laboratory, One Cyclotron Road, M/S: 50F, Berkeley, CA 94720, USA.
The work of this author was supported in part by NSFC (project 19771073), the Special Funds for
Major State Basic Research Projects of China (project G19990328), and Foundation for University
Key Teacher by the Ministry of Education, China. The work also was supported in part by NSF grants
CCR-9619452 and by the Director, Office of Science, Office of Laboratory Policy and Infrastructure
Management, of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.

T Department of Computer Science and Engineering, The Pennsylvania State University, Univer-
sity Park, PA 16802, zha@cse.psu.edu. The work of this author was supported in part by NSF
grants CCR-9619452 and CCR-9901986.

 National Energy Research Scientific Computing Center, Lawrence Berkeley National Laboratory,
One Cyclotron Road, M/S: 50B, Berkeley, CA 94720, HDSimon@1bl.gov. This work was supported
by the Director, Office of Science, Office of Laboratory Policy and Infrastructure Management, of
the U.S. Department of Energy under Contract No. DE-AC03-765SF00098.

1

2 ZHENYUE ZHANG, HONGYUAN ZHA AND HORST SIMON

besty (4) = UkaVkT or even its associated factors Uy and Vj also will be sparse.
Therefore, the storage requirement of besty(A) in the factorized form besty(A) =
Uy EkaT can be even greater than that of the original matrix A. To overcome this
difficulty, we seek to find low-rank approximations that simultaneously also possess
some sparsity properties. One possibility will be to impose sparsity requirements
directly on the low-rank approximation B itself, i.e., we require that B be sparse.
However, this approach is less flexible and it is very difficult to achieve a reasonable
reconstruction error (comparing with that obtained from besty (A4), for example) using
a sparse B. Inspired by the work reported in [7, 15], we consider the approach of
writing B in a factorized form as B = XDY 7, and imposing sparsity requirements
on the factors X and Y instead while keeping D in positive diagonal form. Therefore,
even though X and Y are sparse B may be rather dense, and this actually gives
the flexibility to achieve smaller reconstruction errors. One by-product of using the
factorized form is that the low-rank constraint on B is trivially satisfied once B is
in the factored form, i.e., rank(B) < k if X has k columns. Although the focus of
this paper is on imposing sparsity constraints, we should also mention that other
constraints on the low-rank approximations may also be desirable: in latent class
models for two-way contingency tables [4], probabilistic Latent Semantic Indexing [6]
and nonnegative matrix factorization [8], for example, elements of columns X and Y
represent conditional probabilities, and therefore are required to be nonnegative. As
another example, in the so-called structured total least squares problems, the low-
rank approximations need to have certain structures such as Toeplitz or Hankel [12].
We also mention that there has been research on solving linear systems and linear
least squares problems with sparse solution vectors [3, 10].

The rest of the paper is organized as follows: In section 2, we cast the problem
of computing sparse low-rank approximations in the framework of an optimization
problem. We then propose algorithms and heuristics for finding approximate optimal
solutions of this optimization problem. In section 3, we give a detailed error analysis of
the proposed algorithms and heuristics. Specifically, we prove that the reconstruction
errors of the computed sparse low-rank approximations are within a constant factor
of those that are obtained by SVD. In section 4, we discuss several computational
variations of the basic algorithms proposed in section 2 and in section 5 we conduct
several numerical experiments to illustrate the various numerical and efficiency issues
of our proposed algorithms. We also compare the low-rank approximations computed
by our algorithms with those obtained by SVD and the approaches developed in [15].
In section 6, we summarize our contributions and point out future research directions.

Notation. We use o01(A) to denote the kth singular value of a matrix A in
nonincreasing order. We also replace ox(A) by o when the matrix in question is
unambiguous. By || - || we denote the 2-norm of vectors or matrices.

2. Sparse low-rank approximations. We first review some previous work on
computing low-rank approximations with sparse factors. O’Leary and Peleg proposed
a method for computing low-rank approximations for image processing [11]. In [7]
Kolda and O’Leary called this semi-discrete decomposition (SDD) where they write
a low-rank approximation as By = XkaYkT with X, € R™*k v, € RF¥*" and
Dy, nonnegative diagonal. Furthermore, they require that the entries of X and Yj
belong to three-element set {—1,0,1}. The restriction on the elements of X; and Y;
usually demands a much larger £ > K in order for By to achieve a reconstruction
error comparable to that of best i (A), and therefore the low-rank property of By may
not hold. Despite this the storage requirement of By in the factored form is usually

Matrix Low-Rank Approximations with Sparse Factors 3

much lower than that of A, and this is certainly the major strength of SDD as is
demonstrated in the application in latent semantic indexing. In [15], Stewart proposes
to construct low-rank approximations of a sparse matrix A by selecting a subset of its
columns and rows, i.e., he writes a low-rank approximation as By, = A.M A", where
A, and AT are certain k columns and k rows of A, respectively, and M is chosen
to minimize the error ||A — A.MAT||r once the left and right factors A. and A,
are chosen. The matrices A, and A, are determined by variations of QR algorithms
with a certain pivoting strategy. In general, the matrix M will be dense. Due to
the denseness of M, the storage requirement of Bj can become rather high as k
increases, and also the low-rank approximation will not be sparse if A itself is not
sparse. Numerical experiments showed that Stewart’s approach is especially effective
when A itself is close to high rank-deficiency. The approach we now propose builds
on the strength of the above two approaches: we seek an approximation that is of
low-rank and at the same time we also want to have greater control of the sparsity
properties of the low-rank approximation. To this end, we consider the following
general minimization problem.!

min ||A — XkaYkTHF

2.1
21) subject to Dy, positive diagonal, X; € R™** and Y}, € R"** sparse.

The above optimization problem in its present form is not completely specified because
the minimum depends on the sparsity constraints: the number of nonzero elements of
the left and right factors and the positions of those nonzero elements which constitute
what we call their sparse patterns. So ideally the goal is to make the reconstruction
error ||A — X DY, || as small as possible and keep in mind the following questions:
¢ How to determine good sparsity patterns for the left and right factors?
e How to find the best approximation By = XkaYkT with the chosen sparsity
patterns for X, and Y7
In this paper we will not discuss how to impose the sparsity constraints on the factors
X}, and Y}, in general, but rather we will first start with an heuristic. In this section,
we propose the framework of our sparse low-rank approximation (SLRA) approach
based on the idea of deflation. As can be seen, the heuristic dynamically and implicitly
imposes sparsity constraints on X} and Y.

Algorithm SLRA (Sparse low-rank approximation). Given a
matrix A € R™*™ and an integer k¥ < min{m,n}, this algorithm
produces a positive diagonal matrix Dy, and sparse matrices Xy,
and Yj. At the conclusion of the algorithm, By, = XkaYkT gives
a low-rank approximation of A with sparse factors.
1. [Initialize] Set Ay = A.
2. Fori=1,2,---k
2.1 [Rank-one approximation] Find a sparse rank-one
approximation z;d;y! to A; ; with sparse unit vec-
tors x; and y;.
2.2 Set A; = A;_1 — CﬂzdzyZT

Algorithm SLRA consists of a sequence of k deflation steps [13] which allows us
to build a low-rank approximation one rank at a time. This general approach is

! The diagonal elements of D can certainly be constructed to be positive as we will do in the
sequel.

4 ZHENYUE ZHANG, HONGYUAN ZHA AND HORST SIMON

also adopted in [7], but the actual deflation step there is very different from ours.
After k steps, A, = A — XyD,Y; with X} = [.’L‘l,---,fﬁk], Y. = [yly"';yk] and
Dy, = diag(dy,---,dy). It is worthwhile to point out that the integer k, the rank of
By, in general, can be determined by the stopping criterion |4 — Xy D.Y,"||r < tol
because the error ||A — X3 DY, || = || Ax||# can be easily calculated by a recurrence
relation derived in Section 4.

The key step of Algorithm SLRA is Step 2.1, i.e., computing sparse rank-one
approximations. By Theorem 1.1 the best rank-one approximation to A is given by
uov? with {u,o,v} the largest singular triplet of A. The triplet {u,o,v} can also be
used to produce a good sparse rank-one approximation. The basic idea is to sparsify
u and v to get sparse vectors z and y, and choose a scalar d such that

(2.2) 14 = zdy” || = min [[A —zsy” |7 = Al —d.

Since the left and right singular vectors u and v will undergo this sparsification process,
it is not necessary to compute them to high accuracy (see the remark after Theorem
3.2). The details of Step 2.1 of SLRA is listed below.

Step 2.1 of SLRA (Sparse rank-one approximation.) Given a
matrix A, this algorithm produces a rank-one matrix zdy’ with
sparse vectors z and y.
1. Compute (approximations of) the largest left and right
singular vectors u and v of A.
2. Sparsify u and v to get sparse vectors = and y with ||z]| =

lyll = 1.
2.1 [Sort] Sort the entries of u and v in two sections:

u v
Piu= + , Pw= +

where P; and P, are the permutation matrices re-
sulted from the sorting process.

2.2 [Sparsify| Discard the second sections u_ and v_ to
get sparse vectors z and y:

z e Pl lusll, y« P

[Noell-

U4 V4
0 0
3. Set d = 2T Ay which minimizes

{I|A = zsy™ || | s scalar}.

3. Error analysis. In this section we will compare the low-rank approxima-
tions computed by Algorithm SLRA with those obtained by SVD with respect to
the reconstruction errors. One possible potential alternative is to make the com-
parison directly with the optimal solutions of (2.1) assuming we have made more
specifications on the sparsity of X and Y. For example, we can impose constraints
on the number of nonzeros of X}, and Y}, and leave the positions of those nonzeros
open. This approach at the moment is rather difficult to pursue because we still

Matrix Low-Rank Approximations with Sparse Factors)

do not have a good understanding of the structures of the optimal solutions (2.1).
Fortunately, besty(A) obtained from SVD gives the optimal solutions for (2.1) when
there are no sparsity constraints on X and Y}, and the heuristic of Algorithm SLRA
takes advantage of this connection. Therefore we choose to compare the low-rank
approximation By = Uy, DV, with bestj(A) computed by SVD. To proceed, we first
consider the rank-one case, assuming we have computed the largest singular triplet
exactly. Throughout the rest of the paper, we assume that A € R™*".

THEOREM 3.1. Let {u,o0,v} be the largest singular triplet of A. Use the same
notation as in Step 2.1 of Algorithm SLRA, and assume that ||u_||* + |jv_||* < 2¢?
with € < 1/\/?_> Then

(3.3) |A — zdy”||r < V1+ar||A—uov”||F,

where

2 4
01

= — = 4¢2 1—67 < 4¢€>.
Ty T < <1@P> ‘

Proof. Notice that d is chosen such that ||A — zdyT||% = ||A||% — d* as shown in
(2.2), we need to derive a lower bound for |d|. To this end, partition

A A
T 11 12
hAP, ‘{Azl A22}

conformably with Pju and Pyv (see Step 2.1 of Algorithm SLRA). It follows from the
choice of d that
(3.4) d=a"Ay = ul Avyog [([lug]| - [[o4])-
Recalling that Au = ov and ATv = ou, we obtain
ul Aoy +ul Apvs = oljuyg |, wl Asjoy +ul Asv- = ofju_|?,
and similarly, we have
UIAlT1U+ + UIAgluf =ollvl®, vIALuy + 0l ASu = ofjv|%.

Subtracting the sum of the last two equations of the four equations above from the
sum of the first two yields

(3.5) ul Aoy =u’ Aspv_ + o (1 — [Ju_]]® — |Jo_|]?).
Then substituting (3.5) into (3.4) gives

[ul Apv_ + o (1 —[Ju_||* — |lv_|]*)|

(3.6) | Tl Tz
ol — o)~ ol o]
z Tl Nz
A)
2 T (P o)
S 0_17362
- 1—¢€2

- T B
-9 1—¢€) —

6 ZHENYUE ZHANG, HONGYUAN ZHA AND HORST SIMON

Here we have used the fact that ||Ass|| < [|A|| = 0. It follows from ||A — uovT||3, =
|A]|% — o? that

‘ . . 2¢2 1\ 2 .
1A —zdy” |7 < | AllF — o7 (1 R EF2> = (1+ar)||A—uov" |7,

2¢2 2 et
=1-{1- =4 (1- ——— |,
=1 (12) = ().

completing the proof. 0O

In practice, the exact largest singular triplet is not available and as we mentioned
before it may not be even desirable to have it computed to high accuracy since we
will sparsify w and v by discarding some of their nonzero elements anyway during
the sparsification process. Hence, we need to consider the case when we only have
approximations of the left and right singular vectors.

THEOREM 3.2. Let {u,v} be the approzimate largest left and right singular vectors
of A and 0 = 01(A). Use the notation of Step 2.1 of Algorithm SLRA and that of
Theorem 3.1, and assume that ||[u_|> + |[v_||> < 2€2. Then

(3.7) |A — zdy™||p < /14 a(t +6)||A — uov™||F,

where T is the same as that defined in Theorem 3.1 and

where

_2-6€—1n |Av — oul| + [|[ATu — ov]|

6_7 =
122 1 2

Proof. Define r; = Py(Av — ou) and ry = P (ATu — ov). Similarly as in the
proof of (3.5), we have

wl Ay =ul Ao+ (1= llu | = [l ||?) + 7.

where r = ([ul, uT]r; + 0T, vT]ry) /2 with norm ||| < no. By (3.6) and the in-
equality ||ui]|||us| > V1 — 2€? we obtain

2¢? 7]
d| > 0<11_ 2)
€ e[l

1 2¢2 i
ol|l-— — .
I~ Vi-oe

The result (3.7) follows immediately from (2.2) and the following inequality

Y

1 <1 2¢2 7 >2 +<2662 7) 7
(1 _ - ~

1-€2 /1-2e 1-€2 V1-2¢/) v1—=2¢2
n(2 — 662 — 1)

A S/ V|
L Ry T+o,

IN

completing the proof. 0O
REMARK. We notice that n defined in Theorem 3.1 measures the accuracy of the
approximate left and right singular vectors in a certain relative sense. The results in

Matrix Low-Rank Approximations with Sparse Factors 7

Theorem 3.1 say that 7 = O(e?). Consequently, if ¢ is fixed, there is no point to com-
pute u and v to higher accuracy than O(e?). On the other hand, given approximate
u and v and the corresponding 71, we should choose € to match their accuracy, i.e.,
e = 0(ym).

Now we proceed to estimate the reconstruction error of [|[A — XD Y,I|| for the
general case with k > 1. The basic idea is to estimate {07 (A)} in terms of {o3(A)}
(recall that Ay, = Ag_ —wkdkyg). The key of our proof is to derive a tight upper bound
on 2521 05 (A — zdy") in terms of Zf;l 07(A). Then we will apply the bounds to
Aj_1 and zydyy; step by step, to obtain an upper bound of ||Ax|| = ||A — X}, D, Y,"||
in terms of {o?(AO)} with Ay = A. With the assumptions that the left and right
singular vectors are only approximate, the proof becomes rather unwieldy, and the
bounds obtained are less transparent. Therefore, in the following we will assume that
the left and right singular vectors u and v are computed exactly for each rank-one
SVD approximation in the deflation process.

Notice that if {z,d,y} is the ezact largest singular triplet of A, o;(A — zdy”) =
oiy1(A), for i = 1,--- min{m,n} — 1, and 0;(4 — zdy™) = 0 for i > min{m,n}, i.e.,
the 2nd largest singular value of A becomes the largest singular value of A —zdy”, the
3rd largest singular value of A becomes the 2nd largest singular value of A — zdy”,
and so on. It is easy to see that for any distinct indexes iq,..., i,

3

k k
S0t (A —ady") =3 0% 4 (A)
j=1 j=1

Therefore it is reasonable to expect an O(e) estimation:
k k
(3.8) S 02 (A—adyT) = 302 L1 (4) + O(6)
j=1 j=1

when the triplet (x,d,y) is an O(e) approximation of (u,o,v). We now want to
make (3.8) more precise and prove it rigorously. To this end, we first present several
technical lemmas.

LEMMA 3.3. Denote d = ul Aoy [(|lug]| - |vel)? and o = o1 (A). If [lu_ | +
llo_||? < 2€%, assuming €2 < 1//5, we then have

o—d

a

2 1+62

(39) S Cc1€, Cc1 = W

Proof. By (3.4) and (3.5) we have

iy ul Apyv_ — o((Ju—[]*[lv_|*)
g [P llos]2

Hence
(o[+ llu—|*[lo-|1?
(|t |12 [0+

Writing [[u_|| = v2acos(f), |Jv_|| = v2asin(8) for certain 6 € [0,7/2] and 0 < a < €,
and furthermore, denoting ¢ = a?sin(26) € [0, a?], we have

(3.10) ld—o| <o

lu_fllo— | + lu_|2llo_|? _ a?sin(26) + o' sin®(26) _ -+

[Jut]]? o4 1—2a%+a*sin?(20) 1—2a? +¢2

8 ZHENYUE ZHANG, HONGYUAN ZHA AND HORST SIMON

It can be shown that the function g(t) = (t + #2)/(1 — 2a® + ?) is monotonically
increasing in the interval [0, a?] if a® < €2 < 1/4/5. Therefore,

2 4
by a’+a
9(a’) = 1—2a2 + a*

2 4
€ +e€ 9

< —— =€,

- 1-22 4+ € !

[lu— (oIl + flu_|P[lo—|I?

[l 12 [lo+ 12

(3.11)

Equation (3.9) then follows from (3.10). O
LemMMA 3.4. Let {u,0 = o1(A),v} be the largest singular triplet of A. Denote
E =uovl — xdyT. If [[u_||® + [|v_||* < 2€%, assuming €2 < 1/3, then

(3.12) 1E||r < 01(A) (V2 + €*)e
and
(3.13) loj (A = zdy™) — 011 (A)] < 01 (A)(V2 + €2)e.

Proof. Let h = (o — d)/o with d defined in Lemma 3.3. Then d = (1 — h) and

- T
poEpT — o | Bloillus ol | [vloall 0 }
ol ol 0 v /o
Hence, by (3.10) we obtain that
1EIE/0* = (W[lusl® + lJu-]*) s]* + [0

= W2l P lloll? + a1 + lo-11* = [Ju]*[lo-|I*

‘ . . . 1 - -~ 2
<l oot o o g (T D)
s Pl
2
R R e N e e ey
Tus Moz T
4¢2
2 4
< 2" +e€ 7(1_62)2

< EWV2+€E)

Here we have used the following inequality

2 2
<|lu||+||v||> << 2¢)
— 2 3
[t [0 1—e¢

which is valid for €2 < 1/3. This inequality can be proved using the same technique
as when we prove (3.11). The standard perturbation bounds for singular values [5,
Section 8.6.1] now give

0j(A—zdy") = 0;(A—uov’ +E)
< oj(A—uov?) +||B||
= o (A) +[E]
< o (A) +01(A) (V2 +),

Matrix Low-Rank Approximations with Sparse Factors 9

completing the proof. 0O
REMARK. It can be shown that if ||u_|| < e and ||v_|| <€, then

04(A = 2dy") = 051 (A)] < 01 (4) (1 " ¢12:> “

Using the well-known Wielandt-Hofmann Theorem [5, Section 8.6.1] and Lemma 3.4,
one can prove that

n 1/2 n 1/2
(Z ACE mdyT)> < (> af(A)> +01(A) (V2 + e
i=k

i=k+1
Therefore it is not difficult to show that
(3.14) |A — X, DY I |lr < (14 cre)[|A — UpSi Vi || F,

with
n

k
(3.15) cr = ﬁZai(A)/(> a3 (A)V2+0(e).

i=k+1

However, the coefficient ¢, seems to give a less tight bound. To derive a much tighter
bound for [|A — X, D Y,'||r, we need the following key lemma.

LEMMA 3.5. Use the notation of Step 2.1 of Algorithm SLRA, and assume that
lu_|]? + |Jo_||* < 2€* with € < 1/3. Then for any distinct indezes iy, ..., iy,

k k
(3.16) > o7 (A—ady") Z 07, 11(A) + 01(A)oa(A)e + cof (A)e?,

where ¢ = ¢o for k =1 and ¢ = 2¢y for k > 1, and ¢ = (1 + ¢1€2)%(3 + V2c1€) with
c1 defined in Lemma 3.3.

Proof. Let the SVD of A be A = UXV" with ¥ = diag(o,,---,0,). To simplify
the notation, denote u = uy, v = v1, 0 = o1, and ¥y = diag(os, - -,0,). Denote
B = UT(A — zdyT)V. We also assume that ||u_|| < ||v_|| which implies ||u_|| < e.
(Otherwise we can consider BBT instead of BT B in what follows.) The proof of this
lemma consists of the following three parts.

1) We first show that the matrix BT B is a rank-3 modification of diag(0,Y3),
ie.,

(3.17) BTB = diag(0,%3) + F, rank(F) < 3.
Thus it follows from [16, Page 202] that for distinct indexes i1, ..., i,
k k
> A, (BTB) < Z (diag(0,%3)) + Y _ A;(F)
j=1 j=1 j=1

with the notation A;(-) denoting the j-th largest eigenvalue of a symmetric matrix.
To write the above in another way, we have

(3.18) Dok (A—wdy”) <30T (A)+ 3N (F).

10 ZHENYUE ZHANG, HONGYUAN ZHA AND HORST SIMON
To this end, partition

PlU: Ut

7U2:|7 PQV:

U4

o 0
7V2j|7 Z_|:0 22:|7

(See Step 2.1 of SLRA for the definition of the permutation matrices P; and P,.)
It can be verified that

UTzdy™Vv = d(ele{ —eqwd —wref + wleg)

3

where
]
_ T 0 _ r B — w11
wr = (P U) { u_ | | Uf 0 T wey |
L ,ll -
S .
— T 0 _ r 7 — | Wi2
w2 = (P2V) { v | | VT 0 T wa |
L U7 -
Furthermore, we have
(3819) wir = u | = fwnlP <€, wiz = ffo_ |2 = flwa]2 < 262
Therefore, we can write
B = UT(A - zdy")V
= diag(0,%2) + ci(heleip +eywd +wiel — wleg)

. 5 h 1
diag(0, %) + dler,] { v } o1,)",

i.e., B is a rank-2 modification of diag(0,X,). Here

d=d/(lusll-losl), h=(c—d)yd

To show that B” B is a rank-3 modification of diag(0,¥3), let

_ 0 A = h 1 1 w11 h 1
s = Yowor |’ =11 -1 Wi Wil 1 -1 |

Then it can be verified that

B"B = diag(0,X3) + [e1, w2, ws]Aley, wy, ws]" = diag(0,%3) + F

3

where

d dh(1 — wi1) d1 —wn) -1
[1 -1 0 1 -1 0

[1 :| Ci(h2 + 2hU)11 + ’Ll)11) cfh(l — U)H) 1

Therefore, (3.17) holds.

Matrix Low-Rank Approximations with Sparse Factors 11

2) We now prove that the matrix F' has a negative eigenvalue, which implies
that the last term of (3.18) is a sum of at most two largest eigenvalues of F. First
rank([er, wq,ws]) > 2 since e; is orthogonal to ws. Without loss of generality, we
assume that rank([e;, w2, w3]) = 3. (The case when rank([e;, w2, w3]) = 2 is simpler
and can be similarly handled.) Thus by Sylvester’s Law of Inertia [5, Theorem 8.1.17],
the number of positive eigenvalues of F' is equal to the number of positive eigenvalues
of A. Therefore it is enough to show that A has only two positive eigenvalues. Clearly,
A has at least one positive eigenvalue since it has a positive diagonal element. It can be
shown that the determinant of A is negative: det(A) = —d2(1 + k)2 < 0. It implies
that A has one and only negative eigenvalue because A is obviously not negative
definite. Therefore, A has exactly two positive eigenvalues, and so does F'. Hence we
can write (3.18) as

min{k,2}

k k
(3.20) Z ol (A—zdy") < Z o7 11 (A) + Z A(F).

3) We finally derive upper bounds for \; (F') and A2 (F') which lead to the inequal-
ity (3.16). To this end, we write

F = dler,ws] [(1) é } [e1, ws]" +

d’Ay [0, —d]"
2A ['] [61,11)2,103]TEH+F.
0,-d 0

+[el7w27w3]

It is easy to see that A(H) = {d||ws]|,0,...,0, —d|lws||}. By (3.9) and the inequality
[lws]] < oq€, we thus have

dljws|| + | Fl| < o10¢(1 + ere”) + ||,
1E1]-

(3.21) A (F)
(3.22) Ao (F)

IN N

To estimate ||F||, we normalize wy and ws, and let @y = wy/||ws| and w3 =
ws/||ws]|. It is easy to see that

ller, o, 5]l < V2, [|F| < 2|)

with dh = o — d, and

F = (Aij)?,jzl
[(qf&)2A+d(2crfd)w11 do—d)(1 —wi)wa]) 0 1
= [d(o — d)(1 — wyy)|Jws]| (1 —wi)[w2l* —d|jwa | - [Jws]] J
0 —dlwa || - [|ws]| 0

By Lemma 5.2 of [17] and the fact that fis = fa1 = f33 = 0, we have

171 < wax{ful. | | 22 ;;;]H}+|fu|
< max{|f11|, |f22|+|f23|}+|f12|-

12 ZHENYUE ZHANG, HONGYUAN ZHA AND HORST SIMON

By (3.9) and (3.19), it is easy to see that ||| = O(e2). Furthermore, it can be verified
that

|f11| < |f22| + ‘f23‘ <307 (14 c16)?e?, |f12| <V2e10%(1 + ¢1€%)é,
which leads to
|F]] < (14 c16®)?(3 + V2c1€)0%€® = cao?e?,
and
M(F) < 0109€ 4+ c20%€%, Xao(F) = cp0%€’.

Combining the above bounds with (3.20) yields the result (3.16). O

Now we are ready to prove our main theorem.

THEOREM 3.6. Use the notation in Step 2.1 of Algorithm SLRA, and assume in
each iteration of Step 2.1 |lu_||* + [[v_||* < 2¢* with € < 1/3. Then

A= UpSi Vil < |A = Xe DY, e < 1+ be||[A — UpSi V|,

where

St o) (A)
Z;’l:k+l 032'(14)

by = + O(e).

Proof. Let Ay, = A — XkaYkT with Ag = A, and
Xk:[a:h...,:nk], Dk:diag(d17...,dk)7 Yk:[ylz---:yk]-

Then Ay = Ap_1 — xkdkyg7 where z and yj, are the sparsified version of the largest
left and right singular vectors u*~1) and v(*=) of Aj_,, respectively. Specifically,

we choose permutation matrices Pl(kfl) and Pékil) such that

(k—1) ulf=Y
Py ulk=1) = [uﬁfl)

with ||14(71671)||2 + ||1)(71671)||2 < 262, Then

(k—1)
k— k—
o | = ety

- (k=1) -
re = (P)T |

Since A, = A — XkaYkT, applying Lemma 3.5 to Ay = A1 — mkdkykT, we have

Zﬂf(Ak)

D 05 (Ak1) + o1 (Ar1)o2(Ax1)e + coi (Ag1)e”

Jj=2

(3.23) |4 — X, DYy || %

IN

n k—1 k—1
> oi(A) + ZO o1 (A;)o2(Aj)e + CZ% o2 (Aj)e?.

J=k+1

IN

Matrix Low-Rank Approximations with Sparse Factors 13

On the other hand, by Lemma 3.4, we have with ¢3 = v/2 + €2
(324) a1 (AJ) UQ(Ajfl) + c307 (Aj,1)€

o3(Aj—2) +c3(01(Aj2) + 01(A4;-1))e

IN N IA

j—1
O'j+1(A) + c3 Z g1 (AZ)F
i=0

Let s; = 3.7_0 01 (A;). Then by (3.24)

(325) S; = 01 (Ajfl) + Sj—1 S O'J‘(A) + (1 + 036)83;1
< 0 (A) + (T4 eze)(0j-1(A) + (1 + cze)sj2)
<
< 2(1 + c3€)1 g (A).

Substituting (3.25) into (3.24) gives
01(Aj) < o1 (A) +e3 Y (1 +cse) 'oi(A)e = 0541 (A) + e,
=1

where ¢; = ¢3 527 (1 + c3€)7~70;(A). Similarly, we have

02(4;)) < 0j12(A) + dje.

Therefore,
k—1
(3.26) a1(4;)02(4;)
=0
k
< S (0i(A)ajea (A) + (05 (A) + 0151 (A) + $j1€)hj1€),
j=1
and
k—1 k
(3.27) crf(Aj) < (cr?(A) +20j(A)pj_1e+ ¢?7162).
j=0 j=1

Combining (3.23), (3.26) and (3.27) we obtain that

n k
A-XDY e < 3 o2 A) + 3 05(A)ojn (A)e + bie?
j=k+1 j=1

(1 +bpe)||A — U Si Vi %,

where

k
b =D {07 (A) + (1426605 (4) + 04 (A) + (1 + ce)dj1€) 651

14 ZHENYUE ZHANG, HONGYUAN ZHA AND HORST SIMON

med, epsilon = 0.1 med, epsilon = 0.1
T T T

1 T T T T T T T T 1
\‘\ — excat error
\ ~ upper bound (b)
0.957‘\ 4 15l upper bound (c)

°
Relative Rrrors

N ’
N L
06 S 4
_ SN 09l
055 _ _ (+c, epsion) Ny 1
k -12 ~
__ (1+b,epsion) R
. h . .)))) ‘ .

L
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 0 80 90 100

Fic. 1. (1 + ¢ * €)™ " and (1 + by * €)= /2 (left) and the relative errors (right).

completing the proof. 0O

The bound proved in the above theorem usually is much tighter than the bound in
(3.14). In Figure 1, for various k, we plot the quantities (1 + cpe) ™' and (14 bpe) /2
with the O(e) terms omitted for the matrix med (cf. Section 5) on the left and the
relative error

(1A = besty (4)]|
[AllF

€IThest (k)

and the upper bounds
(1 + cre)errpest(k) and (14 bke)l/Qerrbest(k),

on the right.

4. Computational Variations. In this section, we first discuss several compu-
tational variations of Algorithms SLRA, in particular we look at two approaches for
sparsifying vectors in Step 2.1 of Algorithm SLRA. We first briefly discuss how to
find approximations to the largest singular triplet of a matrix.

Computing Largest Singular Triplets. As we mentioned in Section 2, the largest
singular triplet {u,o,v} does not need to be computed to high accuracy because a
sparsification process that follows will introduce errors by discarding certain nonzero
elements of u and v. There are several approaches for approximating the largest
singular triplets such as the power method and Lanczos bidiagonalization process [5,
13]. Using the power method, we suggest performing several steps of power iteration
as follows,

v « (ATA)™v,
v vf|oll2,
u <~ Av/||Av|]s.

where vy is an initial guess, for example, vy = (1,---,1)7, «a is a small integer, for
example, a = 3.

For Lanczos bidiagonalization, we can run several Lanczos iterations to generate a
pair of orthogonal bases {u1,---,ug} and {vi,---,vg}, and a lower bidiagonal matrix

Matrix Low-Rank Approximations with Sparse Factors 15
Bj satistying

Alvi,---,v8) = [ur,---,ug]Bg + baugy,
ATuy, - ug] = [vl,---,vg]Bg.

The largest singular vectors a and b of Bz will be used to obtain approximations u
and v:

’U:[Ulf":vﬁ]a: u:[ula"':uﬁ]b'

Sorting and Sparsification. This corresponds to how to partition the computed
approximate singular vectors u and v for later sparsification process. By Theorems 3.1
and 3.2 the reconstruction error ||A — zdy” || of the sparse rank-one approximation
depends on the size of the discarded sections ||u_||2 and ||v_||2. Therefore it makes
sense to sort vectors w and v in decreasing order by their absolute values so that
the number of discarded elements is largest under the constraints ||u_||» < e and
lv_|l2 <€ or |[u_|3 + ||[v_||3 < 262 In particular, we find permutations P; and P,
Y+ | with

such that 2 = Pju = { Z+ , D= P =

| > [ag| > -+ > ||, [01] 2 |B2] 2 -+ > [Onl.

Let k, and k, be the lengths of sections u; and vy, respectively. Thus uy = 4(1 : ky)
and vy = U(1 : ky). We then choose

o=rr | M e = | T8] il

The integers k, and k, can be determined by the following two different schemes.
e SEPARATED SCHEME. In this approach, we sort the elements of u and v
separately, and k, and k, are defined by

kuzmin{k‘ ':1@2162}7 kDZmin{k‘

k
i =

17]2421762}
1

J

for a given tolerance e.

e MIXED SCHEME. Another approach is to set w = [u”,v"]" and find a per-
mutation P such that Pw = &, |wy| > |Wa| > -+ > |Wm+n|. We determine
k., such that

k
ko :min{k > kg‘ 3@ > 262},
j=1

where kg is the smallest integer such that the section w(1 : ko) contains both
u-components and v-components. Obviously, the order of the u-components
of vector w implies the permutation P;. So does the order of the v-components
for P,. Therefore the main section w(1 :k,) also determine a(1 :k,) and
(1 : ky), where k, and k, are, respectively, the numbers of u-components
and v-components of W(1 : ky).

16 ZHENYUE ZHANG, HONGYUAN ZHA AND HORST SIMON

REMARK. In general, our experiments show that the mixed scheme performs
better than the separated scheme.

Choice of tolerance €. At each iteration step of Algorithm SLRA, the tolerance
€ can be a pre-determined constant or be chosen dynamically during the iteration
process. We will use, for variable tolerance, at the k-th iteration

_ NAkalle
1Alls

which depends on the approximation computed by previous iterations.
Choice of k. Notice that the norm of error matrix Ay, at step k can be written as

k
|4kl = |4 = Xe DeYall7 = [|All7 = d5.

In fact, we have
1 Akl% = Ak [7 — d;

It is quite convenient to use this recurrence as a stopping criterion for Algorithm
SLRA:

Akl < tol

for the given user-specified tolerance tol.

Self-correcting Mechanism. This is certainly an area that deserves further re-
search, and in the following we can only touch the tip of the iceberg. When we
use a rank-one matrix wov! that is constructed from the exact largest singular
triplet {u,o,v} of A, the difference A — uov? will not have any components in
the two one-dimensional subspaces spanned by u and v, respectively. Notice that
|A —uovT]]% = ||A||% — 2%, and the amount of reduction in the Frobenius norm is the
largest possible by a rank-one modification. Now when we use an inaccurate rank-one
approximation zdy”, in general, it is true that A=A- zdy” will have some compo-
nents left in the directions of u and v. Also ||A||% = ||A||% — d?, and the reduction
in Frobenius norm will be smaller. The question now is the followmg if we compute
the rank-one approximation rdyT for A will rdy pick up some of the components
in u and v that are left by the previous rank-one approximation zdy”? The answer
seems to be yes even though we do not have a formal proof. This indicates that Al-
gorithm SLRA has a self-correcting mechanism: errors made in early deflation steps
can be corrected by later deflation steps. We now give an example that illustrate this
phenomenon. Table 4 lists the first 10 diagonals {d;} and the singular values {o;}
of matrix A, respectively. In this example, those steps j for which d; > o; show the
self-correcting process at work.

A combinatorial optimization problem. Now we reexamine the optimization prob-
lem (2.1) for ¥ = 1. We can impose the following constraints on the number of
nonzeros of z and y: nnz(x) = n,,nnz(y) = ny, where n, < m and n, < n are
fixed. Let i1,...,4n, and ji,...Jn, be the indexes of the nonzero elements of = and
y, respectively. Then it is easy to see that the optimization problem (2.1) is reduced
to

Matrix Low-Rank Approximations with Sparse Factors 17

TABLE 1
Self-correction phenomenon

] d; 9

1 4.5595e+05 4.5808e+05

2 3.8998e+05 4.5762e+05

3 4.5482e+05 4.5761e+05

4 3.7309e+05 3.9093e+05

5 4.4721e+05 3.9050e+05

6 3.5648e+05 3.9049e+05

7 2.2148e+405 2.2090e+-05

8 1.8609e+05 2.2046e+05

9 2.3341e+05 2.2044e+05

10 2.2075e+05 1.1472e+05
. ~ 3AT

(4.28) I (ISP NP R
where A = A([iy, ... ,in,], [j1,- - - Jn,]) is the submatrix of A consists of the intersection
of rows iy, ..., i, and columns ji, ... j,,. Therefore, by Theorem 1.1 we need to find

the largest singular triplet of A. Hence, the optimization problem (2.1) for k = 1 is
equivalent to the following problem:

Find n, rows and n, columns of A such that the largest singular

value of A is maximized.
This is a combinatorial optimization problem, and we do not know any good, i.e.,
polynomial-time,; solution method for it. Step 2.1 of Algorithm SLRA does seem to
provide an heuristic for its solution. Now we give an example to illustrate this point.

ExAMPLE. Consider the following matrix

10 010
1 01 11
10 0 1 0
A_00110
01 011
0 0010

The goal is to compare the computed sparse low-rank approximation with the optimal
solution of the combinatorial optimization problem (4.28) computed by exhaustive
search.

We first compute the sparse approximation XkaYkT for k = 2 using Algorithm
SLRA with € = 0.3 and 8 = 4 for computing the approximate largest singular triplet
using Lanczos bidiagonalization. The computed vectors z; and y; have the numbers
of nonzeros listed below.

nnz(x;) =5, nnz(y;) =4, nnz(xy) =3, nnz(y;) =3.

Next we compute the best rank-one approximation u;s;v{ to A with the constraints
nnz(uy) = nnz(x;) and nnz(vy) = nnz(y4), and then the best rank-one approximation
U804 to matrix A — uys;v] with the constraints nnz(uy) = nnz(xy) and nnz(vy) =

18 ZHENYUE ZHANG, HONGYUAN ZHA AND HORST SIMON

nnz(y,). The above two steps for computing u; and v; are carried out using exhaustive
search. Below we list the computed components of vectors z;, y;, u;, and v;. The
two approximations give the same sparsity patterns, i.e., wherever x; (or y;) has a
zero element, u; (or v;) also has a zero element in the same position, and vice versa.
However, notice that the values of nonzero elements are different but very close.

T P U1 U2
0.4058 0.3245 0.4111 0.3118
0.6146 0 0.6362 0
0.4058 0.3245 0.4111 0.3118
0.3583 0 0.3587 0
0.4058 —0.8885 0.3587 —0.8975

0 0 0 0

Y1 Y2 (%1 V2

0.4508 0.5423 0.4905 0.5066

0 —-0.6170 0 —-0.6322
0.3075 0 0.3346 0
0.7734 0 0.7318 0
0.3226 —0.5702 0.3346 —0.5863

5. Numerical Experiments. In this section, we present several numerical ex-
periments to illustrate the effectiveness and efficiency of our approach for computing
sparse low-rank approximations. We will compare the performance of Algorithm
SLRA with that of SVD and the approach proposed in [15] with respect to the fol-
lowing two issues:

1) the reconstruction errors; and

2) the computational complexity and storage required.
For the numerical experiments, we generate a collection of test matrices which are
listed below together with some relevant statistics: matrices 3, 4, 5 and 6 are term-
document, matrices from SMART information retrieval system, and the rest of the
matrices are selected from Matrix Market [2, 9]. We do not claim that the collection
is comprehensive.

Matrix m n nnz(A) | Density(%)
1 | ash958 958 292 19196 0.68
2 | illc1033 1033 320 4732 1.43
3 | cisi 5081 1469 66241 0.89
4 | cacm 3510 3204 70339 0.63
5 | med 5504 1033 51096 0.90
6 | npl 4322 | 11429 | 224918 0.46
7 | watson4 467 468 2836 1.30
8 | orsirr2 886 886 5970 0.76
9 | e20r1000 | 4241 4241 | 131430 0.73

Some explanation of the notation we used is in order here: m and n represent the
row and column dimensions, respectively, of the given matrix. As used before, nnz(A)

Matrix Low-Rank Approximations with Sparse Factors 19

ash9s8 ilic1033 cisi
1 - 1

0995 \

0.995 R
0.99 N

N
0.99 0.985 N
N

0.98 ~

0.985
0

0.995

0.99

N 098 0985

0.97 ~
0 20 40 60 0 20 40 60 80 0 20 40
watson4 orsirr2 €20r1000
1 1
N
0.9 \\
\ 0995;
08 N
N
0.7 ~ . 0.99
06 S
0 50 100 150 0 100 200 300 0 50 100 150

FiGc. 2. The computed er(k) (solid lines) and the lower bounds (1 + bye)~'/? (dashed lines).

denotes the number of nonzero elements of A. Density is computed as nnz(A)/(mn),
the percentage of nonzero elements of a matrix.

In order to compare our algorithm with SPQR in [15], for each matrix A, we first
use SPQR to compute a rank-k approximation B = A.MAT. We use k = 300 if
min(m,n) > 500, otherwise we use k¥ = 100. Then we let tol(A) = ||A — Bl|r, we seek
to find a low-rank approximation using SLRA such that

|A — Xp DY, || 1 < tol(A).

TeST 1. We compare the low-rank approximations computed by Algorithm SLRA
with constant tolerance e = 0.1 and those computed by SVD. The dimension used for
Lanczos bidiagonalization for computing the approximate largest singular vectors is
B = 4 (See the definition of 3 in the previous section). To illustrate the reconstruction
error ||A — Xy DiY,I||F, we use the error ratio er(k) defined by

|| A — besty (4)]|
[A = X DY ||

er(k) =

to measure the effectiveness of Algorithm SLRA. It is easy to see that 0 < er(k) < 1.
The larger the error ratio is, the more effective SLRA is. Below we list the error
ratios of SLRA with constant tolerance e = 0.1 using the separated sorting scheme.
The rank k is chosen to be 5 ~ 20% of the size | = min(m,n) of a given matrix A.
We also computed the average error ratio defined as

k
>_er(i),

where k is the smallest integer satisfying ||A — X, DY, ||r < e.

Average =

El

20 ZHENYUE ZHANG, HONGYUAN ZHA AND HORST SIMON

Variable Separate SLRA x10° Variable Separate SLRA
T T T T T T T T T T T T T T T T
-0~ ash9s8 O~ ash958
- illc1033 - illc1033
—#- cisi —- cisi
350 =~ cacm 1 ~&- cacm
— med 5 o med
— npl — npl
-o- watsond &~ watsond
3000 - orsirr2 1 > . —- orsin2
—+ e20r1000 T —+ €20r1000
Sal 1
x
2501 T =
2
I
x
< 2001 33
« s
T g
H]
150 1 5
- Z,L
_* g 2
*- s
8
100 y--—2
- . P
k- - == A == " W
A i T e e
us R X I
b - - -0 ---0-—-0---HO---9"~ ©

L L L L L L L L L L L L I
0.05 01 0.15 0.2 0.25 03 0.35 04 0.45 05 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 05

epsion epsilon
Variable Mixed SLRA x10° Variable Mixed SLRA
: T T T T T T T T T T T T T T T

-0~ ash9s8 ~O- ash958

- illc1033 —x- illc1033

- cisi —+- cisi
350H -5 caem 1 -~ cacm

- med 51 o med

— pl — npl

- watsond —©- watsond
3000« orsim2 % - orsir2

—+ €20r1000

—*— e20r1000

~
T

~
T

Rank k
8 R
-1 g
\
| L h L
Total Number of Nunzeros of X and Y
Py
T
/
’
,

*
100 -
s+ - =K "
A 4 -))
=¥ T o L L
Lo e - - _ R M N
S0 K * .t 7@777@777@
b - 0 ---0---0---®©-~--9-"

.
0.05 01 0.15 0.2 0.25 03 0.35 04 0.45 05
epsilon epsion

FiG. 3. Plots for ranks (left) and numbers of nonzero elements of Xy and Yy (right) vs starting
epsilon for the variable tolerance, separated (top) and mized (bottom) sorting approaches.

Matrix k= 5% 10% 15% 20% Average
ash958 0.9946 0.9896 0.9876 0.9845 0.9908
illc1033 0.3622 0.9160 0.9226 0.8984 0.8595

cisi 0.9866 0.9771 0.9690 0.9612 0.9778
cacm 09774 0.9625 0.9427 0.9221 0.9596
med 0.9882 0.9790 0.9699 0.9617 0.9790

watson4 0.9784 0.9374 04833 0.3166 0.7809
orsirr2 0.9217 0.8942 0.9136 0.9206 0.9274

For these matrices, Theorem 3.6 gives tight bounds for the ratios. Figure 2 plots,
with respect to k, the lower bounds (1 4+ bge)~'/? (dashed lines) given in Theorem 3.6
and the ratio quantities er(k) (solid line) computed by the separated sorting SLRA
with e = 0.1 for all the nine matrices. These examples show that SLRA has very high
error ratios for most of the test matrices, especially for the term-document matrices.

TeST 2. In general, the mized sorting scheme gives a smaller number of nonzero
elements, for the sparse factors X and Yy, i.e., less storage required, than the sep-
arated sorting scheme if we use the same tolerance sequence while the rank k of the
low-rank approximations computed by the different schemes are about the same. We

Matrix Low-Rank Approximations with Sparse Factors 21

computed the low-rank approximations using Algorithm SLRA with the same variable
tolerance scheme for both the separated and mixed sorting schemes. Different starting
tolerances e = 0.05:0.05:0.5 are used for each test matrix. In Figure 3 we plot the
ranks (left) and the total number of nonzero elements of X; and Y}, (right) computed
by SLRA with separated (top) and mixed (bottom) sorting schemes. For each test
matrix, the ranks computed by the two sorting schemes are about the same while
mixed sorting scheme gives smaller number of nonzero elements, this is especially the
case for the starting tolerances around e = 0.15.

TEST 3. In this test we compare, respectively, the ranks of the low-rank approx-
imations, the computation cost in flops and storage required for SVD, SPQR, and
SLRA using variable tolerance and mixed sorting scheme. For SLRA, we use € = 0.1
as the starting tolerance and 3 = 6 iterations for Lanczos bidiagonalization. The low-
rank approximations computed by the three approaches have the same reconstruction
errors for each test matrix. In general, as we mentioned before, SVD produces dense
factors even when A is sparse. Therefore the low-rank approximation computed by
SVD requires at least (m + n + 1)k storage for its associated factors. For SPQR, the
rank k of the low-rank approximation By = A.M AT is usually quite large compared
with the rank of the optimal low-rank approximation generated by SVD. Since the
matrix M is generally dense, the storage required is dominated by M resulting in
larger than k2 storage requirement. In contrast, SLRA can produce low-rank approx-
imations with small rank k& and good degree of sparsity of the factors Xy and Y},. (The
number of nonzeros can be reduced by increasing the starting tolerance e, which also
increases the flops and ranks.) We list below the comparison for the term-document
matrices in the test collection.

atrix rank total nnz flops

cisi TSVD 68 449412 6925863163
SLRA 72 217401 523406959
SPQR 300 129720 568382817
cacm TSVD 63 426951 5390479001
SLRA 67 216982 478032905
SPQR 300 133784 463854304
med TSVD 79 922664 9598485598
SLRA 84 278456 658852943
SPQR 300 120444 469695010
npl TSVD 41 647472 6208537332
SLRA 44 384118 616205165
SPQR 300 227567 588513394

However, we should mention that the performance of SLRA is not as good as
SPQR when the matrix A is close to a highly rank-deficient matrix. For example, let
A be the matrix i11c1033 in the test collection. We compute, using SPQR, a rank-100
approximation B = A.M AT The storage required (the number of nonzeros) for the
computed low-rank approximation is about 20% of that for the best approximation
B* computed by SVD that achieves the same reconstruction error. SLAP with e = 0.1
gives an approximation By that has the same reconstruction error as that of SPQR
and the storage required is 85% of that for B* though the rank of By is close to the
optimal rank and much smaller than the rank of B. SPQR also requires less flops
for computing the low-rank approximation. In general, SPQR is very effective for
sparse matrices that are close to highly rank-deficient and the rank of the low-rank

22 ZHENYUE ZHANG, HONGYUAN ZHA AND HORST SIMON

approximation can be predetermined. However, SPQR is not convenient to use if the
user just impose an upper bound on reconstruction error.

6. Concluding Remarks. We have presented algorithms for computing matrix
low-rank approximations with sparse factors. We also gave a detailed error analysis
comparing the reconstruction errors for the low-rank approximations computed by
SVD and the low-rank approximations computed by our sparse low-rank algorithms.
Our algorithms are flexible in the sense that users can balance the tradeoff of high
sparsity level of the computed low-rank factors and the reduced reconstruction error.
Several issues deserve further investigation: 1) we need to develop better ways for
computing sparse rank-one approximations. As we mentioned, for example, if we fix
the number of nonzero elements in = and y, say p and ¢, then min ||A — zdy”||F is
equivalent to the following combinatorial optimization problem: find p rows and ¢
columns of A such that the largest singular value of their intersection is maximized.
We are in the process of finding heuristics for solving this problem and investigating
their relationships to the sorting approach of Algorithm SLRA. 2) Once a low-rank
approximation Ay is computed, a certain refinement procedure needs to be developed
to reduce its reconstruction error and/or the number of nonzeros of its sparse factors.
3) It will also be of great interest to consider reconstruction errors in norms other
than || - || #.

Acknowledgment. Part of this work was done while the first two authors were
visiting National Energy Research Scientific Computing Center, Lawrence Berkeley
National Laboratory. The authors also want to thank the anonymous referees for
their comments and suggestions that greatly improved the presentation of the paper.

REFERENCES

[1] M.W. Berry, S.T. Dumais and G.W. O’Brien. Using linear algebra for intelligent information
retrieval. SIAM Review, 37:573-595, 1995.

[2] Cornell SMART System, ftp://ftp.cs.cornell.edu/pub/smart.

[3] C. Couvreur and Y. Bresler. On the optimality of backward greedy algorithm for the subset
selection method. SIAM J. Matriz Analysis and Applications, 21:797 808, 2000.

[4] M. Evans, Z. Gilula and I. Guttman. Latent class analysis of twy-way contingency tables by
Bayesian methods. Biometrika, 76:557 563, 1989.

[5] G. H. Golub and C. F. Van Loan. Matriz Computations. Johns Hopkins University Press,
Baltimore, Maryland, 3nd edition, 1996.

[6] T. Hofmann. Probabilistic Latent Semantic Indexing. Proceedings of the 22nd International
Conference on Research and Development in Information Retrieval (SIGIR’99), 1999.

[7] T. Kolda and D. O’Leary. A semidiscrete matrix decomposition for latent semantic indexing
in information retrieval. ACM Trans. Information Systems, 16:322-346, 1998.

[8] D. Lee and S. Seung. Learning the parts of objects by non-negative matrix factorization.
Nature, 401:788-791, 1999.

[9] Matrix Market. http://math.nist.gov/MatrixMarket/.

[10] B. Natarajan. Sparse approximate solutions to linear systems. STAM J. Computing, 24:227-234,
1995.

[11] D.P. O’Leary and Shmuel Peleg. Digital Image compression by outer product expansion. IEEE
Transactions on Communications, 31:441-444, 1983.

[12] Haesun Park, Lei Zhang, and J. Ben Rosen. Low Rank Approximation of a Hankel Matrix by
Structured Total Least Norm. TR 97-043, Department of Computer Science, University of
Minnesota, 1997.

[13] B.N. Parlett. The Symmetric Figenvalue Problem. STAM Press, Philadelphia, 1998.

[14] H. Simon and H. Zha. Low-rank matrix approximation using the Lanczos bidiagonalization
process. SIAM Journal of Scientific Computing, 21:2257 2274, 2000.

[15] G.W. Stewart. Four algorithms for the efficient computation of truncated pivoted QR approx-
imation to a sparse matrix. CS report, TR-98-12, University of Maryland, 1998.

[16] G.W. Stewart and J. G. Sun. Matrix Perturbation Theory. Academic Press, 1990.

Matrix Low-Rank Approximations with Sparse Factors 23

[17] H. Zha and Z. Zhang. Matrices with low-rank-plus-shift structure: partial SVD and latent
semantic indexing. STAM Journal on Matriz Analysis and Applications, 21:522-536, 1999.

