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Abstract: We present an improved analytical model describing trans-
mittance of a metal-dielectric-metal (MDM) waveguide coupled to an
arbitrary number of stubs. The model is built on the well-known analogy
between MDM waveguides and microwave transmission lines. This analogy
allows one to establish equivalent networks for different MDM-waveguide
geometries and to calculate their optical transmission spectra using standard
analytical tools of transmission-line theory. A substantial advantage of
our model compared to earlier works is that it precisely incorporates the
dissipation of surface plasmon polaritons resulting from ohmic losses
inside any metal at optical frequencies. We derive analytical expressions
for transmittance of MDM waveguides coupled to single and double stubs
as well as to N identical stubs with a periodic arrangement. We show that
certain phase-matching conditions must be satisfied to provide optimal
filtering characteristics for such waveguides. To check the accuracy of
our model, its results are compared with numerical data obtained from
the full-blown finite-difference time-domain simulations. Close agreement
between the two suggests that our analytical model is suitable for rapid
design optimization of MDM-waveguide-based compact photonic devices.
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1. Introduction

Plasmonic waveguides have attracted considerable attention in recent years because of their
ability to provide subwavelength optical confinement resulting from the strong localization of
surface plasmon polaritons (SPPs) at metal-dielectric interfaces [1, 2]. Some of the promising
SPP-guiding geometries include arrayed nanoparticles [3–5], nanowires [6–8], metal-dielectric-
metal (MDM) waveguides [9–11], V-grooves, [12], and wedges [13]. In the case of MDM
waveguides, their capacity to sustain SPP modes with nanoscale effective areas opens up
many possibilities for a wide range of applications including power splitters [14], U-shaped
waveguides [15], Y-shaped combiners [16], and waveguide couplers [17, 18]. For this reason,
a great deal of effort is currently being devoted to develop MDM-waveguide-based optical
components, similar to those already available at microwave and radio frequencies. Owing to
their compact size, these components are promising candidates for future devices required for
nanoscale integrated optics [19–21].

One of the most challenging applications of MDM waveguides is the wavelength-selective
optical filter (or reflector), which is implemented by coupling one or more stubs perpendicular
to the waveguide axis [22–24]. Transmission spectrum of such filters can be controlled by
varying the number of stubs and/or their parameters such as length, width, and positions. The
MDM-waveguide-based optical filters are commonly modeled by solving Maxwell’s equations
with the finite-difference time-domain (FDTD) scheme [22–26]. Another way to model such
filters is to employ the analogy between MDM heterostructures and microwave transmission
lines [14, 25, 27–29]. This analogy allows one to utilize network-analysis tools to calculate
transmittance for simple filter geometries analytically [30–32]. Since the latter method has been
developed for lossless waveguides [25, 27], it is unable to produce accurate results for lossy
waveguides and hence needs to be supplemented with numerically-calculated parameters to
enhance the accuracy [24]. Since calculation of the filter transmission spectrum with the current
methods is either time-consuming or inaccurate, it is difficult to perform device optimization.
Clearly, a purely analytical description of MDM-waveguide-based optical filters that allows for
SPP damping will be of considerable practical importance.

In this work, for the first time to the best of our knowledge, we develop an improved ana-
lytical model for dissipative MDM waveguides with stub structure. The paper is organized as
follows. In Section 2, we introduce the dispersion law of SPPs that governs major properties
of a plasmonic waveguide. In Section 3, using physical similarity, we establish relationships
between the parameters of MDM waveguide coupled to one stub and characteristic impedances
of an equivalent transmission line. By application of standard transmission line theory, we then
derive analytical expressions for the transmission spectra of the waveguide coupled to one and
two stubs. An algorithm for calculating the transmittance in the case of an arbitrary stub struc-
ture is developed in Section 4. Using this algorithm, we evaluate analytically the transmittance
of an MDM waveguide coupled to an arbitrary number of periodically arranged stubs. Main
results of the paper are summarized in Section 5.

2. Dispersion relation for MDM waveguides

We briefly review the results of MDM-waveguide theory that will be used in the following
section. Consider a planar MDM waveguide consisting of a dielectric layer of thickness h sur-
rounded by two metallic layers that thick enough that they can be assumed to extend to infinity
(see Fig. 1). It is well known that each of metal-dielectric interfaces at y = ±h/2 supports a lo-
calized transverse-magnetic (TM) SPP mode propagating along the x direction. If the distance
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Fig. 1. Left panel: Schematic of an MDM waveguide with dielectric layer of thickness h and
permittivity ε1 separating two metallic layers of permittivity ε2. Right panel: Density plots
of longitudinal (Ex) and transverse (Ey) electric fields (in arbitrary units) corresponding to
the fundamental antisymmetric SPP mode.

between the interfaces is comparable to or smaller than the skin depth of SPPs in dielectric, the
localized modes become coupled [33]. The coupled SPP modes of frequency ω are described
by the electromagnetic field components Uj(x,y, t) ≡ {Ejx,Ejy,Hjz}, whose evolution in the
propagation direction x is governed by the complex-valued propagation constant β such that

Uj(x,y, t) = Uj(y)exp[i(βx−ωt)],

where j = 1 in the dielectric layer and 2 in each metal layer.
The effective refractive index neff of an MDM waveguide is also complex. Its real part deter-

mines the guided wavelength λMDM and its imaginary part determines the propagation length
LSPP of SPPs through the relation

neff =
β
k

=
λ

λMDM
+ i

λ
4πLSPP

,

where k = 2π/λ , λ = 2πc/ω , and c is the speed of light in vacuum. One can calculate β using
the following dispersion relation for the TM-SPP modes [34]:

tanh

(
ik1h

2

)
=
(

ε2

ε1

k1

k2

)±1

, (1)

where the signs ± correspond to symmetric and antisymmetric modes with Ex(y) = ±Ex(−y),
k j = (ε jk2−β 2)1/2 ( j = 1,2), and ε j is the relative permittivity of the jth medium (see Fig. 1).

Similar to the case of conventional dielectric waveguides, the number of modes supported by
an MDM waveguide increases with increasing thickness of the central dielectric layer. Using
Eq. (1), one may show that for h� λ , an MDM waveguide supports only a single antisymmetric
mode that is similar to the fundamental TEM mode of a parallel-plate waveguide with perfect-
electric-conductor (PEC) boundaries [20, 33, 34]: The symmetric mode ceases to exist because
it experiences a cut-off in the reciprocal space [35]. Thus, in the deep subwavelength regime,
an MDM waveguide operates as a single-mode plasmonic waveguide. Since this regime is the
most interesting from the standpoint of nanophotonics applications, we assume in this paper
that the condition h � λ is satisfied and focus on a single-mode plasmonic waveguide.

In Section 3, we illustrate our improved theory of transmission through an MDM waveguide
with stub structure using the example of a silver–air–silver waveguide (ε1 = 1). To describe the
dispersion of silver permittivity, we employ a seven-pole Drude–Lorentz model, known to be
reasonably accurate in the wavelength range from 0.2 to 2 μm, and use the expression [36],

ε2(ω) = 1− ω2
p

ω(ω + iγ)
+

5

∑
n=1

fnω2
n

ω2
n −ω2 − iωγn

,
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Table 1. Parameters of the Drude–Lorentz model for silver

n ωn (THz) γn (THz) fn
1 197.3 939.62 7.9247
2 1083.5 109.29 0.5013
3 1979.1 15.71 0.0133
4 4392.5 221.49 0.8266
5 9812.1 584.91 1.1133
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Fig. 2. Left panel: Real and imaginary parts of the dielectric permittivity of silver. Open
circles show the experimental data and the solid curves show the fit with the 7-pole Drude–
Lorentz model. Right panel: Real part of the effective refractive index and propagation
length of SPPs for four thicknesses of the air layer in the Ag–air–Ag-waveguide.

where ωp = 2002.6 THz is the bulk plasma frequency of silver and γ = 11.61 THz is a damping
constant. The resonant frequencies ωn, damping constants γn, and weights fn associated with
the five Lorentzian peaks are summarized in Table 1.

The left panel in Fig. 2 compares the Drude–Lorentz fit for silver permittivity with the exper-
imental data from Ref. [37]. The right panel shows Re(neff) and LSPP as a function of λ , calcu-
lated using Eq. (1), for air-layer thicknesses of 20, 30, 50, and 100 nm. As the panel indicates,
the guided wavelength is higher for weaker localization of SPPs and decays monotonously with
decreasing frequency. It can be also evident that a decrease in h leads to significant reduction
in the propagation length of SPPs. This is explained by the increase of electromagnetic energy
inside the metal and the resulting growth of ohmic losses. Interestingly, the propagation length
is longer at smaller frequencies despite the fact that the corresponding dissipative losses are
higher.

3. Transmittance of MDM waveguides with one or two stubs

3.1. Single-stub case

Consider the simplest scenario shown in Fig. 3(a) where an MDM waveguide of thickness
h � λ is coupled to a single stub of width w placed perpendicular to the waveguide axis at
x = l. As seen in Section 2, the properties of MDM waveguide can be characterized by the
propagation constant β (h) satisfying Eq. (1). If w � λ , we can model the stub by a truncated
single-mode MDM waveguide of length d and describe it by a constant β (w). To simplify
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Fig. 3. Schematic of an MDM waveguide with a single stub of width w and length d coupled
perpendicular to the waveguide axis (a). The equivalent transmission-line representation
(b), its simplified circuit model (c), and details of the notations employed. ZMDM and ZS are
the characteristic impedances of transmission lines corresponding to the MDM waveguide
and the stub; ZL accounts for the reflection of SPPs from the stub end; Zstub is the effective
stub impedance.

the following treatment, we neglect the effects associated with fringing fields and higher-order
decaying modes excited in the vicinity of the stub-waveguide junction.

To find the transmittance of the waveguide segment between the planes x = 0 and x = L
[see Fig. 3(a)], we employ the analogy between the subwavelength waveguiding in photonics
and electronics [14, 25, 27–29]. With this analogy and the quasi-static approximation (valid as
long as h � λ and w � λ ), we can replace the MDM waveguide coupled to a single stub by
an equivalent network shown in Fig. 3(b). The network is formed by a parallel connection of
an infinite transmission line with the characteristic impedance ZMDM (representing the MDM
waveguide) and a finite transmission line with the characteristic impedance ZS terminated by a
load ZL (representing the stub). The impedance ZL accounts for the phase shift and the damping
of SPP mode caused by its reflection from the end of the stub.

The impedances ZMDM, ZS, and ZL need to be expressed in terms of the waveguide parameters
h, w, d, β (h), β (w), ε1, and ε2 using clear physical arguments. The analogs of the transverse
electric and magnetic fields of the SPP mode are, respectively, the voltage and the current in
a transmission line [28, 31, 32]. Using this analogy, the characteristic impedance of the infinite
transmission line has the form [14]

ZMDM(h) ≈ E1yh

H1z
=

β (h)h
ωε0ε1

, (2)

where ε0 is the permittivity of vacuum. In deriving Eq. (2), we took into account the fact that the
energy of the SPP mode is mainly confined within the dielectric layer, whereas the distribution
of the transverse electromagnetic field is nearly uniform along the y axis (see Fig. 1). Using the
same argument, the characteristic impedance of the transmission line representing the stub is
given by

ZS(w) = ZMDM(w) =
β (w)w
ωε0ε1

. (3)
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The propagation constant β (w) is obtained from Eq. (1) after replacing h with w.
To find the value of ZL, we require it to provide the same amplitude reflectance for electro-

magnetic wave as the stub end does for the TM-SPP mode. Assuming that SPPs experience
normal reflection from the stub end and equating the amplitude reflectance given by the Fres-
nel’s theory [38] to that calculated using circuit analysis [32], we obtain the relation

Γ =
ZL −ZS

ZL +ZS
=

√
ε2 −√

ε1√
ε2 +

√
ε1

,

which leads to

ZL(w) =
√

ε2

ε1
ZS(w). (4)

Equations (2)–(4) establish the required mapping between the MDM waveguide with one
stub and its equivalent network.

Notice that, in the approximation of a perfect electric conductor (PEC) when |ε2| → ∞, the
amplitude reflectance approaches unity and ZL tends to infinity. This implies that with regard
to the TM-SPPs, the waveguide stub is equivalent to an open circuit rather than to a short-
circuited transmission line, as might appear at a glance. The PEC approximation is especially
important from methodological point of view, since it reveals the scope of analogy between the
MDM waveguides and the transmission lines. Indeed, the transmission-line theory predicts that
the reflection from the end of an open circuit does not change the polarity of the voltage, but
flips the polarity of the current (see, for example, Eqs. (3.25) and (3.26) in Ref. [38]). On the
other hand, the reflection of the TM mode from the PEC boundary conserves the magnetic field
vector and inverts the phase of the electric field. Thus there is no analogy between the direction
of the electric (magnetic) field of SPPs and the polarity of the voltage (current). This fact is not
surprising, for the Maxwell equations are by far more complex than the telegraph equations.

The network scheme in Fig. 3(b) may be redrawn in an equivalent form as shown in Fig. 3(c)
by replacing the part corresponding to the stub section by an effective impedance Zstub. The
value of Zstub can be obtained from transmission-line theory and is given by [32, 38]

Zstub = ZS
ZL − iZS tan(βd)
ZS − iZL tan(βd)

, (5)

where β ≡ β (w).
The transmittance of the simplified network is readily obtained using the transfer matrix

method [27, 32, 39]. According to this method, the voltages near the input (x = 0) and output
(x = L) ends of the transmission line,

Vin(x) = V+
in exp(iβx)+V−

in exp(−iβx), Vout(x) = V+
out exp[iβ (x−L)],

are related by the matrix equation
(

V+
in

V−
in

)
= T

(
V+

out
0

)
, (6)

where the transfer matrix is given by T = A(l)B(Zstub)A(L− l) with

A(x) =
(

exp(− iβx) 0
0 exp(iβx)

)
, B(Zstub) =

⎛
⎜⎜⎝

1+
ZMDM

2Zstub

ZMDM

2Zstub

− ZMDM

2Zstub
1− ZMDM

2Zstub

⎞
⎟⎟⎠ . (7)
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Fig. 4. Transmission spectra of the Ag–air–Ag waveguide coupled to a 300-nm stub
(left panel) and the evolution of the waveguide transmittance with the stub length for
λ = 850 nm (right panel). The red, blue, and green curves show the results of our improved
model [Eq. (8)], FDTD simulations, and the lossless model, respectively. The waveguide
parameters are: h = w = 50 nm and L = 400 nm.

Physically speaking, the transfer matrix A describes wave propagation between the stub and in-
put/output facet of the waveguide, while the matrix B represents coupling between the forward-
and backward-propagating waves caused by the impedance Zstub.

Using Eqs. (6) and (7), the transmittance of the MDM waveguide coupled to a single stub is
found to be

T1 =
∣∣∣∣V

+
out

V+
in

∣∣∣∣
2

=
∣∣∣∣1+

ZMDM

2Zstub

∣∣∣∣
−2

exp

(
− L

LSPP

)
. (8)

This result has a clear physical structure. The first part with the modulus accounts for interfer-
ence between the incident wave and the wave reflected from the stub. The exponential factor
describes attenuation of SPPs, which is unavoidable in plasmonic waveguides. As one may ex-
pect, the signal intensity decays on a length scale of the characteristic propagation length of the
SPP mode, LSPP = (2Imβ )−1. Note that T1 does not contain the parameter l, which means that
the exact position of the stub within MDM waveguide is unimportant.

A major advantage of our model compared to earlier ones [25, 27] is that it includes auto-
matically the phase shift of SPPs during their reflection from the stub end. This phase shift
vanishes for perfect conductors with ε2 = −∞. In this limit, ZL also becomes infinite, and
Eq. (8) recovers the well-known result in Ref. [25]. It is also worth noting that the inclusion of
the impedance ZL to represent the phase shift does not prevent us from getting the correct value
of T1 in the absence of the stub. Since the first factor in T1 approaches 1 when d → 0 (inasmuch
as |ε2| � |ε1|), Eq. (8) leads to the simple result T1 ≈ exp(−L/LSPP) in this limit.

To illustrate the developed model, we consider the Ag–air–Ag waveguide with the following
set of parameters: L = 400 nm, h = w = 50 nm, and d = 300 nm. We examine the accuracy of
the model by calculating the waveguide transmittance with the finite-difference time-domain
(FDTD) scheme. In numerical FDTD simulations, we divide the computational domain con-
taining both the MDM-waveguide and the stub into uniform Yee cells with Δx = Δy = 2 nm
and surround it by a perfectly absorbing boundary. Figure 4 shows the comparison of our im-
proved analytical model (red curves) with the simulation data (blue curve). For reference, green
curves show the transmittance of the waveguide neglecting SPP attenuation due to Ohmic losses
(assuming Imε2 = 0) and the phase shift due to reflection from the stub end (assuming ZL →∞).
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Fig. 5. Schematic of (a) an MDM waveguide coupled to two stubs separated by distance Δ
and (b) the corresponding transmission-line model.

In what follows, we use the term “lossless model” to refer to the results obtained under these
two assumptions [25, 27]. As is evident from Figure 4, the results of improved model account-
ing for SPP damping are in good agreement with numerical data. In contrast, the transmission
spectrum in the lossless case substantially diverges from the exact one. The disparity between
predictions of lossless and improved models becomes worse for longer stubs. This feature is
illustrated by the right panel in Fig. 4 for λ = 850 nm. Notice that, while the transmittance
oscillates between 0 and 1 with increasing d in the loss-free case, in the lossy case the ampli-
tude of similar oscillations described by Eq. (8) gradually decays to zero, and the transmittance
approaches a constant value of T1 = (4/9)exp(−L/LSPP) as d → ∞.

3.2. Double-stub case

It is possible to introduce extra degrees of freedom in the design of MDM-waveguide-based
optical filters by adding more stubs to the waveguide. The case of two stubs is of particular
interest since it admits simple analytical investigation and helps us to better understand the
peculiarities of more complex filter geometries. To study the waveguide transmittance in this
configuration, we consider the structure shown in Fig. 5(a). For generality of the treatment, we
assume that the stubs are different and coupled to the waveguide at points x = l1 and x = l2 > l1.

Similar to the single-stub case, we replace the MDM waveguide with two stubs by an equiv-
alent transmission line shown in Fig. 5(b). As before, the jth stub in Fig. 5(a) ( j = 1,2) is
represented by an effective impedance in the line

Z( j)
stub = ZS(wj)

ZL(wj)− iZS(wj) tan[β (wj)d j]
ZS(wj)− iZL(wj) tan[β (wj)d j]

, (9)

where wj and d j are the width and length of the jth stub and the functions ZS(wj) and ZL(wj)
are given by Eqs. (3) and (4), respectively. Denoting by Δ = l2 − l1 the distance between the
stubs, we can write the transfer matrix of the equivalent transmission line as

T = A(l1)B(Z(1)
stub)A(Δ)B(Z(2)

stub)A(L− l2).

Using this result in Eq. (6), we find the transmittance of the MDM waveguide coupled to two
stubs, T2 = |V+

out/V+
in |2, in the form

T2 =

∣∣∣∣∣
(

1+
ZMDM

2Z(1)
stub

)(
1+

ZMDM

2Z(2)
stub

)
− Z2

MDM

4Z(1)
stubZ(2)

stub

exp(2iβΔ)

∣∣∣∣∣
−2

exp

(
− L

LSPP

)
. (10)

This solution shows how the transmittance is affected by the stubs’ separation Δ. By comparing
T1 and T2, we conclude that the first term under the modulus sign in Eq. (10) describes frequency
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Fig. 6. Comparison between the analytic (red and green curves) and numerically calculated
(blue curves) transmission spectra of the Ag–air–Ag-waveguide shown in Fig. 5(a). The
left and right panels correspond to identical and different stubs, respectively. In all cases,
w = h = 50 nm.

response of independent stubs, whereas the second term accounts for multipath interference
between waves reflected from the stubs and therefore can be attributed to their “interaction.”
The interaction strength decays exponentially with Δ making the stubs nearly independent of
each other for Δ � LSPP.

If the stubs of equal dimensions (Z(1)
stub = Z(2)

stub ≡ Zstub) are coupled symmetrically at the same
location (i.e., Δ = 0), Eq. (10) reduces to

T2 =
∣∣∣∣1+

ZMDM

Zstub

∣∣∣∣
−2

exp

(
− L

LSPP

)
. (11)

In the PEC approximation, this equation reduces to the well-known result of Ref. [25].
Figure 6 shows numerical examples of the transmission spectra described by Eqs. (10) and

(11). The red curves include damping of SPPs through the complex-valued permittivity ε2(ω),
the green curves correspond to the lossless model for which Imε2 = 0 and ZL = ∞, and the
blue curves show T2 obtained with the FDTD method. As can be seen, the agreement between
the results of improved analytical model and FDTD simulations is excellent. Our model not
only describes the positions of spectral windows accurately, but it also gives their peak values
precisely. In particular, it is capable of accurately reproducing the results of all numerical sim-
ulations in Ref. [26]. The lossless model fails to predict true values of the spectral maxima but
still allows one to estimate their positions. Notice that, in the asymmetric-stub configuration
(right panel), unity transmittance is not always achieved even when the losses are negligible.
This simply reflects the fact that transmission through MDM waveguide with stub structure is a
coherent process and requires phase matching among the incident and reflected waves to realize
a maximum for T2.

In the absence of losses and the phase shift resulting from SPP reflection, the phase-matching
conditions can be readily derived by examining Eq. (10) in the special case w1 = w2 = h and us-

ing ZMDM/Z( j)
stub =− i tan(βd j). If there is only one stub, the transmission T1 reaches 1, irrespec-

tive of the stub length d, at frequencies ωn satisfying the relation β (ωn)d = πn (n = 1,2,3, . . .).
In the presence of two stubs, however, the equality T2(ωn) = 1 can be achieved only for a spe-
cific relation between d1, d2, and Δ. In that instance, the phase-matching conditions are given
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Fig. 7. Schematic of MDM waveguide coupled to N stubs. The position, width, and length
of the jth stub are given by l j , wj, and d j, respectively; Δ j is the distance between ( j−1)th
and jth stubs.

by

β (ωn)(d1 +d2) = πPn for Δ =
p
q
(d1 +d2) and

β (ωn)d1 = πQn for
d1

d2
=

q
p
,

where n = 1,2,3, . . . and P and Q are the minimum values of integers p 	= 0 and q 	= 0 for which
the preceding relations among d1, d2, and Δ are satisfied. For Δ = 0, the first relation formally
leads to q = ∞ and P = 1 resulting in β (ωn)(d1 +d2) = πn.

Similar conditions, although not discussed here, may be easily obtained for the loss-free
waveguides (with Imε2 = 0) using Eq. (9) of our model. If the metal losses are not negligible,
analytic expressions for the phase-matching conditions do not exist. In this instance, analyti-
cal conditions for the lossless model together with the dispersion law (1) can be employed to
estimate the optimal filter parameters.

4. Transmittance of MDM waveguide with arbitrary stub structure

In this section, we consider how to calculate the transmission spectra in the general case in
which an MDM waveguide is coupled to N different stubs at different locations as shown in
Fig. 7. As before, the jth stub is characterized by three geometrical parameters l j, wj, and d j.
The transfer matrix of the waveguide shown in Fig. 7 can be written in the form

T = A(l1)B(Z(1)
stub)

(
N

∏
j=2

A(Δ j)B(Z( j)
stub)

)
A(L− lN), (12)

where Z( j)
stub is given in Eq. (9) and Δ j = l j − l j−1. Using this result as well as Eqs. (2)–

(4), (7), and (9) in Eq. (6), we can find the output voltage, V+
out for given values of input

voltage, V+
in and the SPP frequency ω . From the ratio of these voltages, we can obtain the

transmittance of an MDM waveguide with arbitrary configuration of N different stubs using
TN(ω) = |V+

out(ω)/V+
in |2. The values of TN calculated with this method will be accurate as long

as the stubs’ separations are much longer than the skin depth of the SPP modes, i.e.,

min
j∈[2,N]

Δ j � 2
|Imk2| .

In general, Eq. (6) need to be solved numerically. However, if the stubs are arranged peri-
odically, the transmission spectra of the MDM waveguide can be calculated analytically. As an

#123889 - $15.00 USD Received 5 Feb 2010; revised 23 Feb 2010; accepted 8 Mar 2010; published 11 Mar 2010

(C) 2010 OSA 15 March 2010 / Vol. 18,  No. 6 / OPTICS EXPRESS  6201



example, we consider the simplest case of N identical stubs spaced apart by a distance Δ. After
some tedious but straightforward algebra, we arrive at the following expression:

TN =
∣∣ΦN−1

+ G+ −ΦN−1
− G−

∣∣−2
exp

(
− L

LSPP

)
, (13)

where

Φ± =
1
2

[
1+

ZMDM

2Zstub
+
(

1− ZMDM

2Zstub

)
exp(2iβΔ)±Q

]
,

G± =
1

2Q

{(
1+

ZMDM

2Zstub

)2

−
[
1+
(

ZMDM

2Zstub

)2]
exp(2iβΔ)

}
± 1

2

(
1+

ZMDM

2Zstub

)
,

Q =
{[

1+
ZMDM

2Zstub
+
(

1− ZMDM

2Zstub

)
exp(2iβΔ)

]2

−4exp(2iβΔ)
}1/2

.

It is easy to verify by direct evaluation of Eq. (13) that, for N = 1 and N = 2, it reduces,

respectively, to Eq. (8) and Eq. (10) with Z(1)
stub = Z(2)

stub. In the case of widely separated stubs
(Δ � LSPP), the terms containing exponents in the functions Φ±, G±, and Q vanish, and trans-
mittance takes the simple form

TN =
∣∣∣∣1+

ZMDM

2Zstub

∣∣∣∣
−2N

exp

(
− L

LSPP

)
.

This result can be interpreted as the transmittance of N successive noninteracting waveguides
each of which is coupled to one stub. As before, the term “noninteracting” implies that the
interference between the waves reflected from different stubs can be neglected.

Another situation that is interesting to analyze using Eq. (13) arises when the stubs form a
Bragg grating with a specific period Δ = λ/(2Reneff) = λMDM/2. In the absence of losses, this
situation is characterized by the condition βΔ = π , whose use reduces Eq. (13) to

TN =
∣∣∣∣1+N

ZMDM

2Zstub

∣∣∣∣
−2

=

{
1+

N2

4

[√
ε1 +

√|ε2| tan(πd/Δ)√|ε2|+
√

ε1 tan(πd/Δ)

]2}−1

. (14)

In deriving this equation, we assumed w = h and employed Eq. (9). It is easy to see that the
transmissivity becomes 100% (TN = 1) for

d
Δ

= n− 1
π

tan−1
√

ε1

|ε2| ,

where n = q,q + 1,q + 2, . . ., q = �(1/π) tan−1(ε1/|ε2|)1/2�, and the sign “�. . .�” stands for
the ceiling function. For a large number of stubs, the transmission peaks with full-width at
half-maximum (FWHM) δ ≈ 4(πN)−1(|ε2|−ε1)/(|ε2|+ε1) are separated by broad stop bands
with TN ≈ 0 in which the MDM waveguides acts as a reflector. If the losses are not negligible
but Δ � LSPP, the first part of Eq. (14) can still be used to calculate the transmittance when
ReβΔ = π , provided that the factor exp(−L/LSPP) is introduced. Qualitatively speaking, the
presence of losses shifts the position of the stop bands and reduces the peak values of TN .

To illustrate the accuracy of our model, we consider two numerical examples in Fig. 8 with
the parameter values given there. More specifically, this figure shows the transmittance of MDM
waveguides coupled to 3 and 4 stubs. The stubs are assumed to be identical and have the same
width as the waveguide, which is often the case in practice. The analytical results obtained from
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Fig. 8. Transmittance of Ag–air–Ag-waveguide as a function of frequency for three (left
panel) and four (right panel) equal stubs coupled perpendicular to the waveguide axis. In
both panels, h = w = 50 nm.

Eq. (13) (red curves) agree well with the numerical FDTD data (blue curves); spectra for the
lossless model (green curves) are also shown for comparison. Specifically, both the positions
of the spectra pass-bands and the transmittances within them are reproduced fairly well by
our improved analytical model. In contrast, the transmission spectra of lossless model deviate
significantly from the real ones. As the waveguide length and/or the number of stubs increase,
the predictions of the lossless model that neglects SPP damping and the reflection-induced
phase shift become worse.

It should be emphasized that our analytical model produces acceptable results much faster
compared with full-scale FDTD simulations. For example, the times required to obtain blue
and red spectra in Fig. 8 approximately differ by a factor of 105. Such a considerable reduction
in computational time and the accuracy attainable with our analytical scheme suggest that our
model can be used as a powerful tool for designing and optimizing MDM-waveguide-based
photonic devices.

5. Summary

In this work, we developed an improved theoretical model which describes transmission
through metal-dielectric-metal (MDM) waveguides with an arbitrary stub structure and includes
losses incurred during propagation of SPPs along the two metal-dielectric interfaces. We have
shown that our model admits analytical solutions for a number of practically-important stub
geometries. The model employs the physical similarity of MDM waveguides coupled to mul-
tiple stubs and standard transmission lines with lumped impedances. To take advantage of this
similarity, we established a mapping between the optical parameters of MDM waveguides and
the impedances representing stubs. It is essential that, in doing so, we take proper account of
dissipative losses described by the complex-valued dielectric permittivities of the waveguide
constituents. Our model accounts not only for ohmic losses of metals but also for the phase
shift resulting from SPP reflections from the stubs’ ends. Using the proposed model, we de-
rived explicit expressions for the transmission spectra of MDM waveguides coupled to one
stub, two unequal stubs, and arbitrary number of equal stubs arranged periodically.

We validated our analytical model by comparing its predictions with numerical FDTD sim-
ulations for several MDM waveguides with different stub configurations. We showed that our
model is capable of predicting precise transmission spectra that can be calculated much faster
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(> 10 000 times) compared with the FDTD method. Our model and analytical results should
prove useful in designing and optimizing MDM-waveguide-based optical components. In par-
ticular, the analysis of the derived formulae reveals the ways to engineer the transmission spec-
tra of MDM-waveguide-based optical filters.
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