
Matsumoto, K. et al.

Paper:

XCSR Learning from Compressed Data
Acquired by Deep Neural Network

Kazuma Matsumoto∗, Takato Tatsumi∗, Hiroyuki Sato∗, Tim Kovacs∗∗, and Keiki Takadama∗

∗The University of Electro-Communications
1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan

E-mail: {kazuma.m@, tatsumi@, sato@hc., keiki@inf.}uec.ac.jp
∗∗The University of Bristol

MVB, Woodland Rd., Bristol, BS8 1UB, United Kingdom
E-mail: tim.kovacs@bristol.ac.uk

[Received March 21, 2017; accepted July 21, 2017]

The correctness rate of classification of neural net-
works is improved by deep learning, which is machine
learning of neural networks, and its accuracy is higher
than the human brain in some fields. This paper pro-
poses the hybrid system of the neural network and the
Learning Classifier System (LCS). LCS is evolution-
ary rule-based machine learning using reinforcement
learning. To increase the correctness rate of classifi-
cation, we combine the neural network and the LCS.
This paper conducted benchmark experiments to ver-
ify the proposed system. The experiment revealed
that: 1) the correctness rate of classification of the
proposed system is higher than the conventional LCS
(XCSR) and normal neural network; and 2) the cover-
ing mechanism of XCSR raises the correctness rate of
proposed system.

Keywords: LCS, XCS, XCSR, neural network, deep
learning

1. Introduction

Neural networks are one of the classification systems
attracting a lot of attention these days because of the on-
going advances in the technology of deep learning [1],
which is a machine learning mechanism of neural net-
works. The correctness rate of classification by neural
networks becomes higher using deep learning and the ac-
curacy of neural networks may even exceed that of the
human brain in some instances.

This paper proposes a hybrid system of the neural net-
work and Learning Classifier System (LCS) [2]. LCS is
an evolutionary rule-based machine learning method that
applies reinforcement-based learning. A neural network
needs to learn intuitively when it receives data that cannot
be classified using the models learned so far. However,
LCS has the potential to accurately classify such data im-
mediately without needing to learn. For example, when
newly input data needs to be appropriately classified even
though it is close to the outliers, it is necessary for the

neural network to perform additional learning for such
outlier data. Furthermore, the neural network may not
be able to learn the correct classification depending on
the data. However, LCS can classify the data by using
multiple classifiers, including classifiers that specialize in
outlier-like data. To overcome the problem of data classi-
fication in neural networks, this paper proposes a system
which is a combination of the LCS method and the inher-
ent capabilities of neural networks.

In detail, we use a deep neural network and XCSR [3]
which is an extension of LCS for continuous real num-
bers. The neural network extracts the features of the envi-
ronmental input, and inputs these features into the XCSR
to learn. Finally, the XCSR classifies the inputs from
the extracted features. The purposed system of this paper
goes on to verify the proposed system using benchmark-
ing problems.

In the recent past, hybrid methods of neural networks
and other machine learning methods have been proposed
to expand the possibility of neural networks. NeuroEvo-
lution of Augmenting Topologies (NEAT) [4] is one such
hybrid system of genetic algorithms and neural networks,
which improves performance by adjusting the parameters
of the neural network (related to the layer architecture and
the number of notes) using a genetic algorithm. Deep
Q-Network (DQN) [5] is another hybrid system of Q-
learning (a reinforcement learning method [6]) and neu-
ral networks. DQN extracts the features from the input
images through the neural network and selects the best
course of action by Q-learning. Although NEAT, DQN,
and the proposed system are hybrid methods of the neu-
ral network and other machine learning methods, NEAT
and DQN are unable to classify the low frequency outlier-
like input data without requiring the additional learning
for such an input.

This paper is organized as follows: Sections 2 and 3 de-
scribe the mechanism of the deep neural network and the
XCSR, respectively. In Section 4, we explain the detailed
mechanism of the proposed system. Section 5 describes
the benchmark classification experiment and we provide
the conclusions of this paper in Section 6.

856 Journal of Advanced Computational Intelligence Vol.21 No.5, 2017
and Intelligent Informatics

XCSR Learning from Compressed Data Acquired by Neural Network

Fig. 1. Example of a neural network.

2. Deep Learning

As the proposed system employs both the neural net-
work and the autoencoder, they are explained in this sec-
tion for better understanding of the proposed system.

Deep learning is the machine learning of deep neu-
ral networks. In this section, we explain basic neural
networks, deep neural networks for classification (Deep
Learning) , autoencoders [7], which denote a specific ar-
chitecture of the neural network.

2.1. Neural Network
A neural network is a classifier modeled on the human

brain [8]. A neural network is composed of nodes, layers
and their interconnections.

1. An input layer is the first set of nodes sensing an
environmental input�x = {x1,x2, . . . ,xn}, where n is a
length of input.

2. A hidden layer is a set of nodes that converts the
sensed input into output. Each hidden layer is con-
nected to the neighboring layers, i.e., the input layer,
other hidden layers, or the output layer. Each hidden
layer represents an internal expression of input inher-
ited from the expression of the previous layer. While
neural networks can have no hidden layers (the in-
put layer is directly connected to the output layer) as
shown in Fig. 1, typical neural networks have one or
more hidden layers to apply complex problems.

3. The output layer is the layer located at the end of a
network, which outputs the class or values.

As shown in Fig. 1, each node in a layer is connected
to another node in the next layer with a weight value w.
In Fig. 1, the parameter b denotes a bias, z is the output
of each node, and u is the summation of the given val-
ues from the previous layer. The neural network aims to
learn the values of the parameter w, which is initially set
to a random value based on the Gaussian distribution. The
summation u is obtained by Eq. (1), where m denotes the
number of nodes in the previous layer.

ui,k = bk +
m

∑
j=1

wk, jzk, j (1)

Fig. 2. Overview of an autoencoder.

For the nodes connected to the input layer, u1, j can be the
corresponding input’s element x j. Then, the output zi,k
of each node is calculated using an activation function as
zi,k = f (ui,k). The activation function can be set differ-
ently for each layer.

2.2. Autoencoder
An autoencoder is an algorithm used for dimensional

reduction using a neural network. The autoencoder works
by reproducing the input through the output. The learned
hidden layers can compress the input, which represents
the features of input. As the answer is the input itself,
the autoencoder indicates unsupervised learning. The au-
toencoder learns the weight values of each node to mini-
mize the error or the difference between the input and the
output, when the neural network consists of three layers.
Fig. 2 shows an overview of an autoencoder. Specifically,
to reproduce the input through the output layer, the num-
ber in nodes of the output layer is set to the same value
as the input length. When a hidden layer detects a smaller
number of nodes than the input length, it encodes a sensed
input to a low-dimensional input. The first half of the
input layer performs the role of encoding (compressing)
the input to obtain the features of the input, and the sec-
ond half layer performs decoding of the encoded input to
its original representation. The proposed system uses this
compression function of the first half layers of the autoen-
coder as a compressor. For the input and output layers,
the activation function denoted by Eq. (2) is employed;
while for the hidden layer, the logistic sigmoid function
(Eq. (3)) is often used as the activation function.

f (ui,k) = ui,k (2)

f (ui,k) =
1

1+ e−ui,k
. (3)

For the measurement of discrepancy between the input
and the output (i.e., the decoded input), the following er-
ror function E is employed:

E =
1
2

N

∑
n=1
||�xn−�y(�xn)||2 (4)

Vol.21 No.5, 2017 Journal of Advanced Computational Intelligence 857
and Intelligent Informatics

Matsumoto, K. et al.

where, �y(�xn) is the output decoded by the hidden layer
with the input �xn. Then, to minimize the error E, back-
propagation [9] updates the weights w and biases b with a
parameter δ . The parameter δ is calculated by Eq. (5).

δi,k =
m

∑
j=1

δi+1, j(wi+1, j f ′(uk, j)) (5)

Here, δ in the output layer’s node is calculated by Eq. (6).

δL,i = yi− xi (6)

where x is the input and y is the output of the autoencoder.
Using δ , the amount of weight-update Δw is calculated

as follows;

Δwi,k = δi,kzi−1,k (7)

Finally, we can update weights w using Eq. (8).

wi,k← wi,k− εΔwi,k (8)

Here, the parameter ε is a learning rate, which controls
how much the weight is increased or decreased for each
update. In summary, the autoencoder performs the fol-
lowing steps:

1. Given�x to input layer.

2. Output�y through hidden layer.

3. Calculate δ of output layer using�x and�y (Eq. (6)).

4. Calculate all δ without output layer’s from output
layer to input layer (Eq. (5)).

5. Calculate all Δw (Eq. (7)).

6. Update all weight w using Δw (Eq. (8)).

7. Return to step 1. (Use the next training sample.)

The autoencoder that has more than five layers is called
a deep autoencoder. As the layers increase, potential of
representation increases and decoding errors can be re-
duced.

2.3. Deep Neural Network for Classification
To use a neural network as a classifier, the softmax

function (Eq. (9)) is employed as an activation function
for the output layer.

f (ui,k) =
eui,k

N

∑
l=1

eui,l

. (9)

The length of the input layer’s nodes is the input size, and
the length of the output layer’s nodes denotes the number
of classes. The output layer outputs a possibility of be-
longing to each class in a range of 0 to 1 and the classes
are tagged to the nodes, respectively. The basic learning
algorithm (backpropagation) is the same as the autoen-
coder. However, classifier networks indicate supervised
learning and we need to give a class possibility as an an-
swer to the output layer with 1-of-K expression. The error

Fig. 3. An example of a deep neural network for classifica-
tion (handwriting number recognition).

function of neural networks for classification is shown as
Eq. (10), where K is a number of classes, and �d is a label
which is expressed with 1-of-K representation.

E =−
K

∑
k=1

�dnk log�yk(�xk) (10)

Figure 3 shows an example of a deep neural network
used for classification with handwriting number recogni-
tion problem. A neural network that has more than two
hidden layers such as one shown in Fig. 3 is called a deep
neural network. To prevent them from getting stuck in
localized solutions, deep neural network weights are ini-
tialized by stacking autoencoders [1].

Deep neural networks can learn using a higher repre-
sentation than the normal neural networks, and it makes
the classification accuracy of deep neural networks more
accurate. As neural networks adjust weight parameters to
minimize errors in all samples, it is difficult to learn low
frequency outlier-like inputs.

3. XCSR

The XCSR classifier system is an extension of the XCS
classifier system [10] with a continuous real-valued cod-
ing for classifiers. In this section, after we explain the
framework of the XCS, we describe the modifications
made to the XCSR when compared with the XCS. Fig. 4
shows the architecture of the XCS.

XCS is one of the major LCS for Boolean input.
The LCS is an evolutionary rule-based machine learning
mechanism. Because the LCS acquires knowledge with
generalized if-then rules called classifiers, it is easy for
humans to understand the obtained knowledge in the LCS.

3.1. Classifier
In the XCS, classifiers consist of a condition, an action,

and five main parameters: (i) the prediction p, which es-
timates the average payoff that the system expects when
the classifier is used; (ii) the prediction error ε , which es-
timates the average absolute error of the prediction p; (iii)
the fitness F , which estimates the average relative accu-
racy of the payoff prediction given by p; (iv) the action
set size as, which estimates the average sizes of the ac-
tion sets this classifier has belonged to; and finally (v) the

858 Journal of Advanced Computational Intelligence Vol.21 No.5, 2017
and Intelligent Informatics

XCSR Learning from Compressed Data Acquired by Neural Network

Fig. 4. The XCS architecture.

numerosity num, which indicates how many copies of the
classifiers with the same condition and the same action
are present in the population.

3.2. XCS Mechanism
The XCS is a reinforcement learning method in which

generalization is obtained through the evolution of a pop-
ulation of condition-action-prediction rules (called clas-
sifiers). A detailed algorithmic description can be found
in [11]. The XCS is composed of performance, reinforce-
ment, discovery components, and subsumption operation.

3.2.1. Performance Component
At each time step, the XCS builds a match set [M] con-

taining the classifiers in the population [P], whose condi-
tion matches the current sensory inputs; if [M] does not
contain all the possible actions, the covering operation
takes place and creates a set of classifiers that match and
cover all the missing actions. The covering operation is
activated when the match set contains less than θmna ac-
tions; however, θmna is always set to the number of avail-
able actions so that the match set includes all the actions.
This process ensures that the XCS can evolve a complete
mapping so that it can predict the effect of every possible
action in any state in terms of the expected returns. This
implies that the XCS can generate classifiers that match
all input, including the low-frequency outlier-like input,
by the covering operation. However, because the XCS
needs to create all patterns of condition-action rules, it
cannot solve high-dimensional problems easily. For each
possible action ai in [M], the XCS computes the system
prediction P(st ,ai), which estimates the payoff that the
XCS expects if the action ai is performed at a state st . The
system prediction is computed as the fitness weighted av-
erage of the predictions of the classifiers in [M], cl ∈ [M],
which advocate action ai (i.e., cl.a = ai):

P(st ,ai) =

∑
cl∈[M]|ai

cl.p× cl.F

∑
c∈[M]|ai

c.F
, (11)

where [M]|ai represents the subset of the classifiers of [M]
with action ai, pk represents the prediction of the classi-
fier clk, and Fk represents the fitness of the classifier clk.
Next, the XCS selects an action to perform. The classi-
fiers in [M] advocate the selected action from the current
action set [A]. The selected action is performed in the en-
vironment, and a scalar reward rt is returned to the XCS
together with a new input configuration.

3.2.2. Reinforcement Component

When the reward rt is received and the match set [M]
with respect to the resulting sensory input is formed, the
parameters of the classifiers in [A] are updated in the fol-
lowing order [11]: prediction, prediction error, action set
size, and finally, fitness.

The prediction cl.p of each classifier cl in [A] is updated
with the learning rate β (0 < β ≤ 1) and discount rate γ
(0 < γ ≤ 1). If the system solves a supervised classifica-
tion (single-step) problem or the termination criterion is
met in a reinforcement learning (multi-step) problem, the
prediction cl.p of each classifier in [A] is updated with the
current reward rt . Otherwise, it updates the classifiers in
the previous action set [A]−1, which is the action set of
previous step with the previous reward rt−1, as follows,

P =

{
rt (if the termination criterion is met)
rt−1 + γ×maxa P(st ,a) (otherwise)

(12)

cl.p← cl.p+β (P− cl.p) (13)

Then, the prediction error cl.ε and the action set size
cl.as of each classifier cl are updated as follows:

cl.ε ← cl.ε +β (|P− cl.p|− cl.ε) (14)

cl.as← cl.as+β
([

∑
c∈[A]

c.num
]
− cl.as

)
. (15)

Finally, the classifier fitness is updated in two steps: first,
the accuracy cl.κ of the classifier in [A] is computed as
follows,

cl.κ =

⎧⎨
⎩

1 if cl.ε < ε0

α
(

cl.ε
ε0

)−ν
otherwise.

. . . . (16)

The accuracy cl.κ implies that a classifier is considered
accurate if its prediction error cl.ε is smaller than the
threshold cl.ε0; a classifier that is accurate has an accuracy
cl.κ equal to 1. A classifier is considered to be inaccurate
if its prediction error cl.ε is larger than cl.ε0; the accu-
racy cl.κ of an inaccurate classifier is computed as a po-
tentially descending slope given by α(cl.ε/ε0)−ν . Then,
the fitness cl.F of each classifier cl in [A] is updated with
a relative accuracy cl.κ ′ as follows:

cl.κ ′ =
cl.κ× cl.num

∑
c∈[A]

c.κ× c.num
. (17)

Vol.21 No.5, 2017 Journal of Advanced Computational Intelligence 859
and Intelligent Informatics

Matsumoto, K. et al.

cl.F ← cl.F +β (cl.κ ′ − cl.F). (18)

3.2.3. Discovery Component

On a regular basis, a genetic algorithm (GA) is applied
to the classifiers in [A] or a previous action set [A]−1 de-
pending on the parameter θGA. It selects two classifiers
based on the fitness of the classifiers [A], copies them, and
performs crossover and mutation on the copies with prob-
ability χ and μ respectively. The resulting offspring are
inserted into the population and two classifiers are deleted
if the number of classifiers in the population [P] is larger
than the population size limit N to keep the population
size constant. This work uses two-point crossover, niche
mutation [11], and a tournament selection [12] in all sys-
tems.

3.2.4. Subsumption

The subsumption operation is applied to the classifiers
in [A] after updating the classifier parameters and to the
offspring after GA. A classifier can be subsumed by a
more general classifier than itself, provided that the more
general classifier is accurate and well updated (i.e., ε ≤ ε0,
exp > θsub).

3.3. XCS to XCSR
The XCSR is the XCS extension for continuous real

value problems.

3.3.1. Classifier Representation

In the XCSR, the classifier condition is changed. The
XCSR expresses the conditions with a range of continu-
ous values called the CS expression. The CS expression
has two values – a center value (ci) and a spread value (si)
– and the range is [li,ui), where li is ci− si and ui is ci + si.
Then, the classifier matches the inputs if all values in the
inputs are within the condition range (i.e., li ≤ xi < ui for
all xi). When covering the classifiers, the conditions for
the new classifier are ci = xi, si = random(s0). x is an
input, and random(s0) represents a real random number
from 0 to s0. s0 is a covering system parameter in the
XCSR.

3.3.2. Rule-Discovery Component

In the rule-discovery component, the mutation opera-
tor is modified as ci ← ci + random(2m)−m, si ← si +
random(2m)−m. m is a covering system parameter in the
XCSR.

3.3.3. Subsumption of XCSR

The subsumption mechanism of the XCS is modified
such that a classifier cl1 of a bigger interval range [li,ui) of
condition can subsume a classifier cl2 of smaller interval
range [l′i ,u

′
i) of condition (i.e., li ≤ l′i ,u

′
i ≤ u j).

4. Proposed System

4.1. Features
The classification correctness rate of a neural network

is high, and it derives the correct output from some un-
known input: however, it is difficult for a neural network
to derive the correct output for an unknown low frequency
outlier-like input. On the other hand, because the LCS is
an evolutionary rule-based system, it is easy for the LCS
to adapt to low frequency outlier-like inputs by generating
new classifiers; however, it is difficult for the LCS to han-
dle high-dimensional input because it is too large to allow
the LCS to explore all best state-action rules.

Because a neural network adjusts the weight parame-
ters to minimize the error of all samples, it is difficult
for a neural network to learn low frequency outlier-like
input. However, because the LCS is a rule-based classi-
fier system, when an unknown input is encountered, the
LCS can deal with it correctly by generating a new clas-
sifier, which can match the input by a covering operation.
This paper proposes a hybrid system of the deep neural
network and the XCSR to improve the correctness rate
of classification of the deep neural network. Because it
is difficult for the LCS to learn from high dimensional
input, the deep neural network extracts features of input
and compresses the information to reduce the dimension
so that XCSR can learn. Because XCSR can handle low
frequency outlier-like input, the proposed system can also
handle low frequency outlier-like inputs. Therefore, the
proposed system can improve the correctness rate of clas-
sification because it can explore unknown solutions.

4.2. Architecture
The proposed system is composed of the XCSR and

the improved deep neural network – the Deep Classifica-
tion Autoencoder (DCA). The architecture of the XCSR
is shown in Fig. 4 in Section 3.

4.2.1. Deep Neural Network Component – The Deep
Classification Autoencoder (DCA)

The improved deep neural network for the proposed
system is composed of the deep neural network for clas-
sification and deep autoencoder. Henceforth, we call the
improved it the Deep Classification Autoencoder (DCA).
Fig. 5 shows the architecture of the DCA. The DCA has
two output layers – the classification layer and the autoen-
coder layer. The aim of the DCA is to extract the features
of the input with high-dimensional compression. A nor-
mal autoencoder can compress the input; however, it does
not have class labels. The DCA is designed such that the
autoencoder learns the features of the input according to
the class. In detail, the first half layers of the autoencoder
can compress the input to replace similar common parts
found by comparing all inputs with the short symbols. Be-
cause the autoencoder reproduces the input information,
the first half layers of the autoencoder compresses the in-
put without losing the necessary information. However,

860 Journal of Advanced Computational Intelligence Vol.21 No.5, 2017
and Intelligent Informatics

XCSR Learning from Compressed Data Acquired by Neural Network

Fig. 5. Architecture of the deep classification autoencoder
(DCA).

the compression rate of the autoencoder is small because
the autoencoder can compress only the similar parts of the
input. On the other hand, the neural network for classifi-
cation can reduce unrelated information received as input
for classification. However, the neural network for clas-
sification can be applied for classification problem only.
To tackle the problems, by combing the autoencoder and
neural network for classification, the first half layers of
the autoencoder can compress more information of the in-
put without losing necessary information than the autoen-
coder based on the features for classification derived from
the neural network for classification. This is because it is
possible to replace the relationship between the inputs ob-
tained by the neural network for classification with a short
symbol. The DCA has higher compression performance
than the ordinary autoencoder. Increasing the compres-
sion ratio makes it possible to reduce the input to fewer
dimensions and to improve the learning speed and accu-
racy of the XCSR, which is normally not good at learning
from high-dimensional input.

The output layers of the DCA are fully connected to the
common previous layer, and the activation function of the
classification output layer employs the softmax function
(Eq. (9)); the activation function of the autoencoder out-
put layer employs the logistic sigmoid function (Eq. (3)).

The layer constitution of the DCA is the same as that
of deep autoencoder [13], which has an hourglass type
structure except for the output layers. The lengths of the
nodes of the classification output layer are the number of
classes, and the lengths of the nodes of the autoencoder
output layer are the same as that of the input layer.

The outputs of the DCA are the class possibility dis-
tribution and the decoded input; however, the proposed
system does not use both outputs but uses the compressed
input in the hidden layer.

4.2.2. Abstract of the System

The proposed system is composed of the DCA and the
XCSR. Fig. 6 shows the entire system architecture.

The first half layers of the DCA play the role of an en-
coder, which compresses the environmental input. The
input to the XCSR is compressed input generated by the

Fig. 6. Architecture of the proposed system.

encoder. The XCSR gets the reward from the environment
by outputting an action to the environment and updates the
rules according to the given reward. The environment also
provides answer in order to learn the DCA. The output of
the XCSR is the output of the proposed system; note that
the output of the DCA is ignored.

4.3. Mechanism

4.3.1. Learning of the DCA

The principle of the learning mechanism is the same as
that of the autoencoder and neural network except for the
output layers. This is because both the autoencoder and
neural network in the DCA share the hidden and input
layers but separately have their own output layers. The
activate and error functions of the autoencoder layer are
used in Eqs. (2) and (4), and the classification layer is used
in Eqs. (9) and (10). When the DCA learns, it does not ex-
ecute the learning of the autoencoder and neural network
separately, but regards two output layers as a single out-
put layer and executes the backpropagation as the learning
to change the weight of the entire system. Note that both
output layers do not interfere with each other because they
are independent of each other. In the learning, the out-
put layer of the autoencoder is set as the data in the input
layer, whereas the output layer of the neural network is set
as the correct value (label) converted into the 1-of-K rep-
resentation. Note that the learning of the autoencoder and
neural network in the DCA is completed by the learning
of the entire system. The brief algorithm for understand-
ing the DCA is summarized as follows: (1) one set of the
input and output data is given to the DCA; (2) the input
data is set in the input layer in the DCA, whereas the same
input data is set in the output layer for the autoencoder in
the DCA. The output data (converted into the 1-of-K rep-
resentation) is set in the output layer for NN in the DCA;
and the backpropagation used as the learning is executed
over the entire system; (4) the process is repeated until all
data sets are input to the DCA.

Vol.21 No.5, 2017 Journal of Advanced Computational Intelligence 861
and Intelligent Informatics

Matsumoto, K. et al.

4.3.2. DCA Component
The DCA reduces the dimensions of the input data to

a level that the XCSR can learn, and the compressed data
are input to the XCSR. When the DCA is composed of L
layers with n nodes in the input layer and m(n > m) nodes
in the central layer (the (L+1)/2-th layer), the first layer
after the central layer is the encoder, which compresses n
input data to m data, and the central layer to the L th layer
is the decoder, which decodes m data to (n+ the number
of classes) data along with the output distribution possi-
bility of the class. The input data from the environment
are input to the input layer of the DCA and calculation is
performed from the input layer to the central layer. The
outputs of the central layer are the compressed data and
input data of the XCSR.

4.3.3. XCSR Component
The XCSR receives input, which is reduced in dimen-

sion by the DCA, and learns the classifiers in the lower
dimension. The XCSR receives the input from the DCA,
outputs an appropriate action to the environment, gets a
reward from the environment, and updates the rules using
the reward. The output of the XCSR becomes the output
of the proposed system. Note that the XCSR learns only
in the low-dimensional space; hence, all operations are
done in the low-dimensional space.

4.4. Algorithm
Algorithm 1 shows the algorithm of the proposed sys-

tem. In Algorithm 1, L is the number of layers in the
DCA.

1. Initialize the DCA, and conducts pre-training using
training samples from the environment. (line 1–9)

2. Learn the DCA using training samples from environ-
ment until error of output is not down. After that, the
DCA stop learning. (line 10–16)

3. Initialize the XCSR, and learn. Input of XCSR uses
output of the encoder in the DCA. (line 17, 19–23)

4. When the system meets the termination conditions,
finish learning. (line 18, 24)

5. The output of XCSR is the output of proposed sys-
tem. (line 21)

5. Experiment

To confirm that 1) the compression function of the
DCA works well, 2) the proposed system performs in a
superior manner, even learning from the compressed in-
puts, and 3) the classification correctness rate of proposed
system is better than that of the neural network (DCA)
and XCSR, we conducted an experiment on a classifica-
tion benchmark problem – Connectionist Bench (Sonar,
Mines vs. Rocks) [14].

Algorithm 1 Proposed system.
1: Initialize weights of DCA according to gaussian dis-

tribution
2: for i = 0 . . .L−2 do
3: AE[i] ← Make Autoencoder with DCA. Layer[i]

and DCA. Layer[i+1]
4: while Average error of output is down do
5: x← Environment. GetSituation
6: y← AE[i]. Output(x)
7: AE[i]. Backpropagation(x,y)
8: end while
9: end for

10: while Average error of output is down do
11: x← Environment. GetSituation
12: c← Environment. GetClass
13: y← DCA. OutputAutoencoderLayer(x)
14: d←DCA. OutputClassificationLayer(x)
15: DCA. Backpropagation(x,y,c,d)
16: end while
17: Initialize XCSR
18: while Not end of learning do
19: x← Environment. GetSituation
20: σ ← DCA. Encode(x)
21: act← XCSR. Input(σ)
22: ρ ← Environment. Execute(act)
23: XCSR. Update Parameters(ρ)
24: end while

5.1. Connectionist Bench (Sonar, Mines vs. Rocks)
Connectionist Bench (Sonar, Mines vs. Rocks) is a

classification benchmark problem which is used in [14].
The problem involves training a network to discriminate
between sonar signals bounced off a metal cylinder and
those bounced off an approximately cylindrical rock.

There are 60 attributes all of which are continuous real
values in range of from 0 to 1. There are two classes
(mines and rocks) and 208 instances (111 mine instances
and 97 rock instances).

As 208 instances are too few to train neural network,
in this experiment, we created a dataset from the original
dataset using the following method: (1) copy a data point
of the original dataset; (2) add a random value in the range
from −0.05 to 0.05 to all attributions; (3) repeat these
steps 99 times for each data point. By employing this
process, the dataset size increase to 20800.

5.2. Evaluation and Experiment Settings
To compare the respective method (i.e. the proposed

system) and the XCSR, we use the correctness rate of
classification as evaluation criteria, which is the correct
answer rate in 10000 random connectionist bench prob-
lems.

The DCA is prior-trained by stacking autoencoder in an
appropriate manner, and a suitable amount of learning is
carried out, until the error is sufficiently small. Each layer
of the DCA is composed of {60-24-10-24-62} nodes. All
weights are initialized according to Gaussian distribution,

862 Journal of Advanced Computational Intelligence Vol.21 No.5, 2017
and Intelligent Informatics

XCSR Learning from Compressed Data Acquired by Neural Network

Table 1. Parameters of XCSR.

Parameter Explanation Value
N maximum number of classifiers in [P] 1000
β learning rate 0.2

θGA threshold of GA 25
χ crossover rate 0.8
μ mutation rate 0.04

θdel threshold of classifier deletion 20
δ parameter of classifier deletion 0.1

θsub threshold of subsumption 20
ε0 allowable error 10
α parameter of calculating F 0.1
ν parameter of calculating F 5

pI,εI ,FI initial value of new classifier all 0.01
θmna minimum number of actions in [M] 2
pexplr probability to act randomly 1

S0 maximum value of s0 1.0
M maximum value of m 0.1

Fig. 7. Classification error of neural networks in each iteration.

and all biases are initialized to 0. The learning rate of the
DCA (ε) is set to 0.02.

The normal XCSR is input 60-dimensional continu-
ous real values, and the proposed system compresses 60-
dimensional continuous real values to 10 dimensions of
continuous real values. The XCSR in the proposed sys-
tem is input compressed 10-dimensional continuous real
values.

The general parameters of XCSR are set as listed in
Table 1.

The parameters of conventional methods, i.e. deep neu-
ral network and deep autoencoder, are set to the same as
DCA.

5.3. Results
Figure 7 shows the result of the “classification error”

of DCA and the neural network, both of which have the
same parameters. In this figure, the vertical and horizontal
axes indicate the classification error and iteration, respec-
tively. Note that the small classification error means that
the input data is correctly classified with a high probabil-
ity. Fig. 7 shows that the classification error of DCA and

Fig. 8. Reproduction error of autoencoders in each iteration.

Fig. 9. Classification correctness rate of each system.

neural network are approximately the same, which sug-
gests that DCA can compress the input data with remain-
ing necessary features with the same proficiency as that of
the neural network.

Next, Fig. 8 shows the result of the “reproduction error”
of DCA and autoencoder, both of which have the same
parameters. In this figure, the vertical and horizontal axes
indicate the reproduction error and iteration, respectively.
Note that a system which has a smaller reproduction er-
ror can compress the input data at a higher rate than a
system which has a larger reproduction error (i.e., it is
possible for the former system to compress the input data
into smaller dimensions with the same error as that of the
latter system). Fig. 8 shows that the reproduction error
of DCA is smaller than that of autoencoder, which sug-
gests that DCA can compresses the input data at a higher
compression rate in comparison with autoencoder. From
Figs. 7 and 8, DCA can compress the input data with re-
maining necessary features proficiently as the of neural
network and its compression rate is higher than that of
autoencoders.

Figure 9 shows each individual correctness rate of clas-
sification which is evaluated at each XCSR iteration. The
vertical and horizontal axes indicate the correctness rate
of classification in 10000 random tests of the respective

Vol.21 No.5, 2017 Journal of Advanced Computational Intelligence 863
and Intelligent Informatics

Matsumoto, K. et al.

Table 2. Converged correctness rate of classification.

DCA XCSR Proposed system
Correctness rate 97.52% 95.30% 99.90%

system (the normal XCSR, the proposed system) and it-
erations of XCSR learning, respectively. The gray dotted
horizontal line denotes the correctness rate of classifica-
tion of the DCA, which is 97.52%. It is fixed because it is
not affected by the specific iteration of XCSR learning.

Table 2 lists the converged maximum correctness rate
of classification for various systems (the DCA, the normal
XCSR, and the proposed system).

As observed from Fig. 9 and Table 2, the proposed sys-
tem is always more accurate than the normal XCSR, and
the correctness rate of the proposed system became higher
than the correctness rate of the DCA from 26,000 itera-
tions.

5.4. Discussion
Figures 7 and 8 show that the DCA can compress input

with remaining necessary features like autoencoder, and
its compression rate is higher than that of the normal deep
autoencoder without losing the accuracy of classification.

Figure 9 shows that the XCSR in the proposed system
can learn correctly, even learning from the compressed
inputs.

In Table 2, it can be observed that the correctness rate
of the normal XCSR converges to 95.30%. The rea-
son it does not converge to 100% is the shortage of N
(maximum number of classifiers in [P]). As the proposed
system compresses 60 dimensions to 10 dimensions, the
N = 1000 is sufficient for the proposed system. On the
other hand, the normal XCSR is input a 60-dimensional
input, and it needs many classifiers to adapt the environ-
ment, however the N is limited the number of classifiers
makes this result. Hence the correctness rate of classifi-
cation of the proposed system is always higher than the
normal XCSR’s one, as shown in Fig. 9.

The reason that the correctness rate of classification of
the proposed system is higher than that of the DCA is
that XCSR can deal with low frequency outlier-like in-
put by generating fit classifiers or evolves classifiers. The
neural network can output correct answers when the fea-
tures of input are similar to the learned features. However,
when the system receives low frequency outlier-like input,
sometimes neural network gives incorrect results. For ex-
ample, if the DCA (or the neural network) learns features
such as “if the spectrum of the high frequency component
is strong, the output is mine,” it cannot output the cor-
rect answer when exceptions are input such as “however,
the spectrum of the high frequency component is strong,
the rock is correct.” The XCSR can learn it correctly by
generating it as a specialized classifier. In this result, we
confirmed that inputs for which the DCA does not output
correct answer could be adequately dealt with by the pro-
posed system in covering operations in the XCSR compo-
nent. The covering operation in the XCSR is an operation

Fig. 10. An image of modifying answer by covering mech-
anism when DCA outputs wrong answer.

that generates classifiers to match inputs. The proposed
system outputs correct output by the covering operation in
the proposed system even if the DCA outputs wrong out-
put. Fig. 10 shows an example image in which the wrong
outputs by DCA are modified to the correct answer by
the covering operation. In this figure, the following oper-
ations are conducted; 1) 60-dimensional continuous real
values from the environment (0.84, 0.48, 0.36, . . ., 0.03)
are input to the DCA; 2) the output classification layer of
the DCA outputs estimates class (“mine”) from the input,
and at the same time outputs compressed continuous real
values by the central layer of the DCA (0.61, 0.89, 0.92);
3) the covering operation of XCSR generates classifiers
which cover compressed input ({if “0.61, 0.89, 0.92” then
“mine”} and {if “0.61, 0.89, 0.92” then “rock”}); 4)
the reinforcement component of XCSR updates fitness of
classifiers; 5) the performance component selects the best
action ({if “0.61, 0.89, 0.92” then “rock”}), and outputs
the correct answer (“rock”).

The reason that the correctness rate of classification did
not became 100% in the XCSR of the proposed system is
thought to be related to the similarity of features when
the different input is compressed by the DCA. However,
because they are not all the same features, the correctness
rate seems to be improved by updating parameters of clas-
sifiers of the XCSR by repeating learning.

In addition, we conducted the same experiment in the
conventional deep neural network for classification and
the XCSR with conventional deep neural network for clas-
sification to compare the proposed system against them.
Table 3 shows converged correctness rate of classification
on the conventional deep neural network for classifica-
tion and XCSR with conventional deep neural network for
classification in the same experiment conditions. From
this table, even this is not as much as the proposed sys-
tem. However the correctness rate of classification of the

864 Journal of Advanced Computational Intelligence Vol.21 No.5, 2017
and Intelligent Informatics

XCSR Learning from Compressed Data Acquired by Neural Network

Table 3. Converged correctness rate of classification in
conventional neural network for classification and its hybrid
with XCSR.

NN NN with XCSR
Correctness rate 96.81% 97.98%

Fig. 11. Correctness rate of 20-multiplexer problem.

conventional deep neural network for classification is im-
proved by the XCSR, and the effectiveness of combining
neural network and the LCS was shown. It is said that de-
ciding parameters of neural network (including layer size
and structure) is difficult. However, the XCSR can cover
this problem. We can also observe that the DCA can com-
press input more effectively than the conventional neural
network and it makes the DCA more accurate.

Finally, in order to investigate the generalization capa-
bility of the proposed system, we additionally conducted
the experiment of 20-multiplexer problem [15] as it dif-
fers from the problem of the Connectionist Bench prob-
lem. The 20-multiplexer problem is the binary classifier
problem as one of the major LCS benchmark problems.
The 20-multiplexer problem has 20 binary attributes. The
first 4 bits are called address bits, and the other 16 bits are
called reference bits. The answer of input is represented
in the reference bit which is indicated by the address bits.
Unlike the Connectionist Bench problem where the sig-
nificant attributes (which give a big influence on the out-
put) are fixed to all input data, such attributes vary ac-
cording to the input data in the 20-multiplexer problem,
which make it a difficult to solve using a neural net-
work. The experiment settings follow Section 5.2 ex-
cept for N = 30000. We compared the correctness rate
of the proposed system with DCA, XCSR, and neural
network. Fig. 11 shows the classification result, where
the vertical and horizontal axis indicate the correctness
rate of the classification and the learning iteration, respec-
tively. From this figure, the correctness rate of classifica-
tion is high in the case of normal neural network, XCSR,
DCA and the proposed system. This result indicates that
the correctness rate of classification by the proposed sys-

tem is higher than that of the other methods for the 20-
multiplexer problem, which is the same as the tendency
that is shown in the case of the Connectionist Bench prob-
lem. These implications suggest that the proposed system
has a generalization capability which is higher than the
other comparable methods.

As can be observed in this figure, the correctness rate
of classification is high in the case of neural network for
classification, normal XCSR, DCA, and the proposed sys-
tem. The tendency which the correctness rate of the pro-
posed system is higher than that of DCA, XCSR, and neu-
ral network for classification is the same as that shown
in the case of the Connectionist Bench problem. These
experimental results suggest that the proposed system is
applicable to various data sets regardless of the continu-
ity or discontinuity of values. However, it is difficult for
the proposed system to learn from datasets that cannot be
compressed by feature extraction, which correlates to all
input values like parity problems.

Based on these reasons, the following are the impli-
cations 1) the reproduction error of DCA is smaller than
the normal deep autoencoder, 2) the proposed system per-
forms well, even learning from the compressed inputs, 3)
the classification correctness rate of proposed system is
better than that of the DCA and the XCSR, by dimension
reduction and covering operations of the XCSR, and 4)
the N (maximum size of classifier) of the proposed sys-
tem needed is lower than that of the normal XCSR.

6. Conclusion

This paper first proposed the Deep Classification Au-
toencoder (DCA), which is a dimension compressor with
necessary features by combining the deep neural network
for classification and autoencoder. Then, it proposed the
XCSR with the DCA, which is one of LCSs that can deal
with continuous real numbers to improve the correctness
rate of classification by adapting unknown low frequency
outlier-like input.

As a consequence of the proposed system, 1) environ-
mental inputs are encoded by the first half layers (the en-
coder) of the DCA; 2) the encoded (compressed) data be-
come the input of the XCSR; 3) XCSR outputs the ac-
tion(class) to the environment; and 4) XCSR receives the
reward from the environment and learns classifiers.

To verify the effectiveness of the proposed system,
we conducted an experiment on the Connectionist Bench
problem that compares the results of XCSR which learns
from uncompressed data (60 continuous real values) with
those of the proposed system which learns from the data
compressed from 60- to 10-dimensional data (continuous
real values). Through intensive empirical experiments,
the following implications have been revealed; 1) the re-
production error of DCA is smaller than that of the normal
deep autoencoder; 2) the proposed system performs bet-
ter than the normal XCSR, even learning from the com-
pressed input data; and 3) the proposed system performs
better than the conventional neural network by deriving

Vol.21 No.5, 2017 Journal of Advanced Computational Intelligence 865
and Intelligent Informatics

Matsumoto, K. et al.

correct output in the case of low frequency outlier-like in-
put. These results show the proposed system can solve
some problems that neural network can not solve.

Future work can focused on that to activating inter-
pretability of LCS in the proposed system, so that the
DCA can decode classifiers to generalized human read-
able if-then rules.

References:
[1] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm

for deep belief nets,” Neural computation, Vol.18, No.7, pp. 5271-
1554, 2006.

[2] H. John, “Holland. Escaping brittleness: The possibilities of
general-purpose learning algorithms applied to parallel rule-based
systems,” Machine learning, an artificial intelligence approach,
Vol.2, pp. 593-623, 1986.

[3] S. W. Wilson, “Get real! XCS with continuous-valued inputs,”
Learning Classifier Systems, pp. 209-219, Springer, 2000.

[4] K. O. Stanley and R. Miikkulainen, “Evolving neural net-
works through augmenting topologies,” Evolutionary computation,
Vol.10, No.2, pp. 99-127, 2002.

[5] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al., “Human-level control through deep reinforcement learning,”
Nature, Vol.518, No.7540, pp. 529-533, 2015.

[6] R. S. Sutton, “Learning to predict by the methods of temporal dif-
ferences,” Machine learning, Vol.3, No.1, pp. 9-44, 1988.

[7] G.W. Cottrell and P. Munro, “Principal components analysis of im-
ages via back propagation,” Visual Communications and Image Pro-
cessing ’88: 3rd in a Series, pp. 1070-1077, International Society
for Optics and Photonics, 1988.

[8] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas
immanent in nervous activity,” The bulletin of mathematical bio-
physics, Vol.5, No.4, pp. 115-133, 1943.

[9] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-
sentations by back-propagating errors,” Cognitive Modeling, Vol.5,
No.3, 1988.

[10] S.W.Wilson, “Classifier Fitness Based on Accuracy,” Evolutionary
Computation, Vol.3, No.2, pp. 149-175, June 1995.

[11] M. V. Butz and S. W. Wilson, “An Algorithmic Description of
XCS,” Soft Computing, Vol.6, No.3.4, pp. 144-153, 2002.

[12] M. V. Butz, D. E. Goldberg, and K. Tharakunnel, “Analysis and
Improvement of Fitness Exploitation in XCS: Bounding Models,
Tournament Selection, and Bilateral Accuracy,” Evolutionary Com-
putation, Vol.11, No.3, pp. 239-277, 2003.

[13] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimension-
ality of data with neural networks,” Science, Vol.313, No.5786,
pp. 504-507, 2006.

[14] R. P. Gorman and T. J. Sejnowski, “Analysis of hidden units in a
layered network trained to classify sonar targets,” Neural Networks,
Vol.1, No.75, 1988.

[15] S. W. Wilson, “Classifier fitness based on accuracy,” Evolutionary
computation, Vol.3, No.2, pp. 149-175, 1995.

Name:
Kazuma Matsumoto

Affiliation:
The University of Electro-Communications

Address:
1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
Brief Biographical History:
2016- Graduated the University of Electro-Communications Bachelor’s
4th grade
2016- Enrolled the University of Electro-Communications Master’s Course
Main Works:
•Matsumoto, K. et al., “Learning classifier system with deep
autoencoder,” Evolutionary Computation (CEC), 2016 IEEE Congress on.
IEEE, 2016.

Name:
Takato Tatsumi

Affiliation:
The University of Electro-Communications
Research Fellow of Japan Society for the Promo-
tion of Science

Address:
1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
Brief Biographical History:
2015-2017 Master Course Student, The University of
Electro-Communications
2017- Doctoral Course Student, The University of
Electro-Communications
2017- Research Fellow, Japan Society for the Promotion of Science
Main Works:
• “A Learning Classifier System that Adapts Accuracy Criterion,” Trans.
of the Japanese Society for Evolutionary Computation, Vol.6, No.2,
pp. 90-103, 2015.

866 Journal of Advanced Computational Intelligence Vol.21 No.5, 2017
and Intelligent Informatics

XCSR Learning from Compressed Data Acquired by Neural Network

Name:
Hiroyuki Sato

Affiliation:
The University of Electro-Communications

Address:
1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
Brief Biographical History:
2009- Assistant Professor, Faculty of Electro-Communications, The
University of Electro-Communications
2010- Assistant Professor, Graduate School of Informatics and
Engineering, The University of Electro-Communications
2016- Associate Professor, Graduate School of Informatics and
Engineering, The University of Electro-Communications
Main Works:
• H. Sato, “Chain-Reaction Solution Update in MOEA/D and Its Effects
on Multi and Many-Objective Optimization,” Soft Computing, Springer,
Vol.20, Issue 10, pp. 3803-3820, 2016.
Membership in Academic Societies:
• The Institute of Electrical and Electronics Engineers (IEEE)

Name:
Tim Kovacs

Affiliation:
Honorary Senior Lecturer, Department of Com-
puter Science, University of Bristol

Address:
MVB, Woodland Rd., Bristol, BS8 1UB, United Kingdom
Brief Biographical History:
2001- Joined the University of Bristol
2006- Visiting Scientist, University of New South Wales
2015- Visiting Scientist at the University of Electro-Communications
Main Works:
• Kovacs, T., “Strength or Accuracy: Credit Assignment in Learning
Classifier Systems,” Springer-Verlag, ISBN1-85233-770-2, 2004.

Name:
Keiki Takadama

Affiliation:
The University of Electro-Communications

Address:
1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
Brief Biographical History:
1995- M.E. degree at Kyoto University
1998- Ph.D. at the University of Tokyo
1998-2002 Visiting Researcher, Advanced Telecommunications Research
Institute (ATR) International
2002-2006 Lecturer, Tokyo Institute of Technology
2006-2011 Associate Professor, The University of
Electro-Communications
2011- Professor, The University of Electro-Communications
Main Works:
• Evolutionary computation, reinforcement learning, multiagent system,
healthcare system
Membership in Academic Societies:
• The Institute of Electrical and Electronics Engineers (IEEE)
• Association for Computing Machinery (ACM)
• AI- and informatics-related academic societies in Japan

Vol.21 No.5, 2017 Journal of Advanced Computational Intelligence 867
and Intelligent Informatics

