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Abstract

The wealth of phylogenetic information accumulated over many decades of biological research, coupled with recent
technological advances in molecular sequence generation, presents significant opportunities for researchers to investigate
relationships across and within the kingdoms of life. However, to make best use of this data wealth, several problems
must first be overcome. One key problem is finding effective strategies to deal with missing data. Here, we introduce
LASSO, a novel heuristic approach for reconstructing rooted phylogenetic trees from distance matrices with missing values,
for data sets where a molecular clock may be assumed. Contrary to other phylogenetic methods on partial data sets, LASSO

possesses desirable properties such as its reconstructed trees being both unique and edge-weighted. These properties are
achieved by LASSO restricting its leaf set to a large subset of all possible taxa, which in many practical situations is the
entire taxa set. Furthermore, the LASSO approach is distance-based, rendering it very fast to run and suitable for data sets
of all sizes, including large data sets such as those generated by modern Next Generation Sequencing technologies. To
better understand the performance of LASSO, we assessed it by means of artificial and real biological data sets, showing its
effectiveness in the presence of missing data. Furthermore, by formulating the supermatrix problem as a particular case
of the missing data problem, we assessed LASSO’s ability to reconstruct supertrees. We demonstrate that, although not
specifically designed for such a purpose, LASSO performs better than or comparably with five leading supertree algorithms
on a challenging biological data set. Finally, we make freely available a software implementation of LASSO so that
researchers may, for the first time, perform both rooted tree and supertree reconstruction with branch lengths on
their own partial data sets.
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Introduction
The ease and speed with which molecular sequence data can
now be generated using Next Generation Sequencing (NGS)
technologies are enabling evolutionary biologists to embark
on exciting, albeit highly challenging, endeavors such as de-
termining the phylogenetic relationships within and between
the kingdoms of life, and at a resolution rarely seen previously.
NGS has perhaps been most influential at the subspecies level,
and data sets encompassing numerous lines, strains or acces-
sions are becoming commonplace. These new data, together
with a wealth of legacy data sets typically at a higher taxo-
nomic level, promise the interleaving of species and subspe-
cies within a common evolutionary framework.

Despite major advances in the field of phylogenetics over
the last half-century of phylogenetic studies, and in particular
large-scale analyses involving hundreds of taxa, we still face
many obstacles. Current problems range from data collection
and data storage to information extraction and tree or net-
work building. Even with greater access to high performance
computing resources, computationally demanding phyloge-
netic approaches such as Bayesian, likelihood, and parsimony
methods may be out of reach for researchers possessing such

data sets, given the vastness of tree space. Consequently, dis-
tance-based methods have an important role to play, rapidly
providing phylogenetic trees or networks that can form a
basis for further investigation.

Distance-based methods have been the subject of consid-
erable criticism, centering on their representation of (poten-
tially extensive) character or molecular variation as a single
number. Nonetheless, the computational efficiency and ease
of use of distance-based tree reconstruction methods make
them an attractive option for large data sets, where they can
provide a snapshot of the underlying evolutionary relation-
ships quickly and easily. In addition to providing evolutionary
insights in their own right, they can be used to provide good
starting/guide trees for more sophisticated methods such as
the ones above. Furthermore, new genetic distance estima-
tion methods continue to be developed with improved prop-
erties and for particular data sets, such as those recently
introduced in Joly et al. (2015). Importantly, the new distance
measures can be used to exploit potentially massive single
nucleotide polymorphism (SNP) data sets such as those de-
rived from NGS reads. They lead to a greater accuracy of
distance estimates in the face of key issues such as allelic
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variation, polyploidy, and recombination over existing mea-
sures and within a simulation framework that allows for fur-
ther development in this area.

Another key problem in phylogenetics, as indeed in all data
analyses, is how to deal with missing data. In the biological
arena, missing data tend to arise either from neglecting to
collect a sample of interest or from the failure of an experi-
mental assay. Given the growing uptake of high-throughput
technologies, it is likely that the latter problem will be most
prevalent going forward. Popular distance-based methods
such as Neighbor Joining (Saitou and Nei 1987), and BioNJ
(Gascuel 1997) (for the inference of unrooted trees) and
UPGMA (Sokal 1958) (for rooted trees) require that an
input distance matrix does not contain any missing values
(i.e., the distance matrix D on a taxa set X is complete).

In practice, such a requirement often results in researchers
removing certain taxa from an analysis, where including them
would give rise to one or more missing values. In addition to
losing data, a recent study by Huang and Knowles (2015)
showed that excluding such data points from NGS analyses
may have further unexpected consequences such as biasing
the included loci with regard to their mutation rates.
However, simulation studies (see, e.g., Criscuolo et al. 2006)
indicate that distance data sets can contain a considerable
amount of redundancy, suggesting that not all distance values
are required to reconstruct the underlying tree. Consequently,
methods capable of reconstructing phylogenetic trees from
incomplete, or partial, distance matrices may provide re-
searchers with the ability to analyze the entirety of their
data and to minimize or negate consequences such as
those identified in Huang and Knowles (2015).

Little research to date has investigated how to make use of
this redundancy and, out of what has been done, most has
focused on how to exploit it to reconstruct a phylogenetic
tree. However, another fundamental issue of interest is that of
“uniqueness.” Here, this concept refers to the following ques-
tion: Can we find the set of pairwise distances which are
sufficient to identify the tree of relationship on which they
have evolved? Formalized in terms of when a set of pairs of
taxa “lassos” a phylogenetic tree (Dress et al. 2011), it turns
out that this question is surprisingly difficult to answer when
the tree in question is unrooted (see, e.g., Dress et al. 2011;
Huber and Steel 2014, for recent partial theoretical results),
and not much is known about the rooted tree case.

Fortunately, the uniqueness problem becomes much more
tractable when, in addition to being rooted, the sought after
tree is also “equidistant” (meaning that the distance from the
root of the tree to each of its leaves is the same) (see, e.g.,
Huber and Popescu 2013; Huber KT and Kettleborough G,
submitted, for some mathematical characterizations of this
problem). Sometimes referred to as equidistant representa-
tions (Semple and Steel 2003), dendrograms, or ultrametric
trees such trees are commonly constructed when a molecular
clock (Zuckerkandl and Pauling 1962) can be assumed for the
evolution of the taxa of interest.

The recently emerged plethora of NGS data sets, particularly
those at the subspecies level, have been shown to include many
consistent with a molecular clock. These data, together with

widely used software packages such as BEAST (Bouckaert et al.
2014), which enable the construction of phylogenetic trees for
both molecular and relaxed molecular clocks, highlight the
relevance of this concept to contemporary phylogenetic stud-
ies. Examples of recent analyses where molecular clocks have
enabled a deep level of understanding to be gained include
population studies (e.g., determination of plant germplasm
genetic diversity; Xiao et al. 2010), paleontological studies
(e.g., estimation of divergence dates and the effect of climate
change on diversification; Weir and Schluter 2008b), and phy-
logeographic studies (Confalonieri et al. 1998). Weir and
Schluter (2008a) provide more details on these examples and
see Hellmuth et al. (2013) on the successful use of so-called
symbolic ultrametric trees in orthology detection.

Additional challenges in phylogenetic analysis stem from
attempting to combine disparate data sets in a single analysis.
In addition to dealing with patchy taxonomic coverage, as
some taxa will have been studied more than others (e.g.,
Philippe et al. 2004; Sanderson et al. 2010; Steel and
Sanderson 2010; Roure et al. 2012), constructing such a tree
entails finding ways to combine different types, qualities, and
quantities of data, as well as addressing the problem of how to
combine data sets that might only share very few taxa. The
latter is a formidable problem in its own right, and in practice
there have been two main approaches to solve it. Supertree
approaches aim to combine two or more (potentially very
small) phylogenetic trees within a single parental tree on all
the taxa, that in some sense displays the evolutionary infor-
mation contained within the starting trees. Supermatrix
approaches aim to combine data sets underlying the tree,
either at the character state matrix or at the distance
matrix level. Supermatrix approaches are, of course, a partic-
ular form of the missing value problem described above, as
combining two complete matrices with overlapping taxa will
result in one partial matrix with potentially many missing
values. These approaches generally use some sort of algorithm
(known as an imputing scheme) to replace missing values
with likely values (see, e.g., Bininda-Emonds 2004; Queiroz
and Gatesy 2006 for such schemes in the character state
context, and Gu�enoche and Grandcolas 1999; Makarenkov
2001; Gu�enoche et al. 2004 in the distance context), rather
than leaving them blank. However, although many solutions
have now been proposed for the supertree problem (see, e.g.,
Bininda-Emonds 2004; Brinkmeyer et al. 2013, and the refer-
ences therein) and the supermatrix problem for character
state matrices (see, e.g., Bininda-Emonds 2004), relatively
few approaches have been put forward to address the super-
matrix problem for distance matrices that do not use an
imputing scheme (see, e.g., DeSoete 1984; Gaul and Schader
1994; Gu�enoche and Grandcolas 1999; Makarenkov 2001;
Gu�enoche et al. 2004; Criscuolo et al. 2006; Criscuolo and
Gascuel 2008, for imputing-based solutions).

The various supertree and supermatrix approaches have
differing pros and cons. For example, supermatrices have been
criticized for the dependence of the generated supermatrix
upon the order in which the missing values are inferred, and
the potentially heavy influence of even a small imputation
error on the tree topology, the latter due to a cascading effect
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such an error might have on other inferred missing values
(Lapointe and Levasseur 2004). Criticisms of supertrees in-
clude not using primary information, combining trees that
have potentially evolved under different evolutionary models
into a supertree without properly accounting for this dispar-
ity, and not properly taking into account the branch-lengths
associated with the input trees (see Willson [2004] for an
exception to this and Kupczok [2011] for a recent comparison
of supertree methods).

In the form of the LASSO approach, we propose a novel
method for rooted tree reconstruction from “partial dis-
tances” on data sets that are approximately clock-like.
Contrary to the methods alluded to above, it is not imput-
ing-based. Also, note that it bears no relation to the “Lasso
regularized least squares method” in statistics (Tibshirani
1996), instead taking its name from prior theoretical phylo-
genetic research (e.g., Dress et al. 2011; Huber and Steel 2014).
LASSO is similar in spirit to the supermatrix approach intro-
duced in Misof et al. (2013) and the veto-supertree approach
proposed in Scornavacca et al. (2008) in that not every taxon
in the combined taxa set is guaranteed to be a leaf in the
resulting tree. It essentially works by trying heuristically to
detect a treelike signal on as many taxa as possible from
the available distances and then reconstructing the “unique”
equidistant tree on those taxa.

Like UPGMA, LASSO is an iterative process in the sense that
it begins with a distance matrix D on some set X with n � 2
taxa with a graph G of n isolated vertices, each of which is
labeled by a taxon in X. In each iteration step, the distance
matrix on a smaller taxa set is recomputed and, in a bottom
up manner, an equidistant tree on X is reconstructed. Central
to this process is the identification of a subset of taxa that
have minimal distance from one another. In contrast to
UPGMA, LASSO works on both partial and complete distance
matrices, whereas UPGMA can only take a complete distance
matrix as input. Furthermore, LASSO replaces the minimal dis-
tance taxa subset by a composite vertex that can contain two
or more taxa, whereas UPGMA only allows two. Finally, the
distances between a newly created composite vertex and any
other vertices are calculated by a consensus rather than by
using average distance as in the case of UPGMA. These latter
two differences ensure that LASSO enjoys several desirable
properties such as “consistency,” by which we mean that
the equidistant tree T returned by LASSO is the unique tree
which, for any two taxa x and y for which the distance value
D(x, y) is known (and which remains at the end of the relevant
LASSO run), is the distance between them in T.

We assessed the performance of LASSO as a tree reconstruc-
tion approach from partial distance matrices using simulated
data sets and a real biological data set containing 26 intra-
specific strains of the wild yeast Saccharomyces paradoxus
(West et al. 2014). In both studies, and independent of the
shape of the topology of the starting equidistant tree consid-
ered in our simulation experiments, we found that even with
10% of the distance values missing LASSO was able to success-
fully reconstruct that tree. In addition, to illustrate LASSO’s
potential as a supertree approach, we applied it to a wheat
accession data set which we obtained by combining

molecular marker scores on 411 wheat accessions (generated
as part of the GEDIFLUX EU Framework V project; Reeves et
al. 2004) with a similar data set of 118 wheat accessions
(Sayar-Turet et al. 2011), approximately a quarter of which
are also included in the GEDIFLUX data set. We showed the
resulting LASSO supertree to be highly congruent with the two
input data sets, and furthermore to a greater or similar extent
to those supertrees produced by five leading supertree meth-
ods. Finally, to enable other researchers to apply LASSO to their
own data sets, we implemented the approach within software
which, together with an accompanying manual, is freely avail-
able for download from https://www.uea.ac.uk/computing/
lasso (last accessed February 19, 2015).

Results and Discussion
We refer to Materials and Methods for terminology and
notation.

Tree Reconstruction from Simulated Partial Distance
Matrices

The results of our missing value simulation study showed
that, as expected, the normalized Robinson-Foulds distances
between T0jY and T increased for all three tree topology types
(caterpillar, balanced, and Yule-Harding) with the percentage
Pmiss of missing values. We further discovered that, across all
values of Pmiss, equidistant caterpillar trees were recon-
structed most accurately, with a mean normalized
Robinson–Foulds distance below 0.1 even when 30% of the
distance values were missing.

A potential reason for the superior performance of LASSO on
caterpillar trees might lie in the way in which nonleaf vertices
are reconstructed. To correctly reconstruct such a vertex v of
T0, the so-called child-edge graph associated with v must be a
complete graph (Huber and Popescu 2013). It is straightfor-
ward to show that for a caterpillar tree (i.e., where all but one
vertices possess two children with at least one leaf below—see
also Semple and Steel [2003]), the likelihood that this condition
holds is high, implying that LASSO often correctly reconstructs v.
Conversely, a balanced tree has the most number of vertices
where both children are leaves. Thus, the likelihood that the
child-edge graph associated with such vertices is not a com-
plete graph increases as the number of missing distance values
grows, implying that T may be very different from T0jY .
Furthermore, trees generated under the Yule–Harding model
tend to be highly balanced (see, e.g., Semple and Steel 2003,
Section 2.5). Therefore, it is unsurprising to observe that equi-
distant Yule–Harding trees and equidistant balanced trees ex-
hibit a similar behavior. Interestingly, equidistant Yule–Harding
trees were reconstructed slightly more accurately than equidis-
tant balanced trees overall, presumably due to small departures
from a purely balanced state.

Figure 4(i) suggests that for low quantities of missing dis-
tances (i.e., Pmiss � 10%), LASSO is very good at exploiting re-
dundancy in a given distance matrix to correctly reconstruct
the underlying equidistant tree, independent of the tree type.
To better understand how much this observation depended
on the starting trees not containing a polytomy, we also
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investigated the influence of the maximal vertex out-degree k
of such a tree on LASSO’s performance. We summarize our
results in figure 4(ii) in terms of the average percentage Pleaves

of the elements in X that are also present in the leaf set of the
equidistant tree (T,!) returned by LASSO.

As expected, Pleaves is very high (i.e., above 90%) for all values
of k if the quantity of missing distances is low (i.e.,
Pmiss � 10%). This observation is encouraging from a supertree
perspective, as the out-degree of a vertex can be comparatively
high in such trees. However, with an increasing proportion of
missing distances, equidistant trees with a lower maximal out-
degree appear to fare better overall. More precisely, in the case
k = 2 (i.e., no polytomy) an equidistant tree returned by LASSO

still contains over 80% of the leaves of T0 even if 40% of the
distance values are missing. To obtain a similar result for k = 20,
only approximately 15% of missing distance values can be tol-
erated. A potential reason for this discrepancy might be that
the likelihood of the child-edge graph of a high out-degree
vertex not being complete increases quickly with a growing
proportion of missing distance values.

Tree Reconstruction from a Yeast Partial Data Set

Applying either UPGMA or LASSO to the complete distance
matrix from the yeast study (West et al. 2014) produced a tree
very similar to that estimated by its authors (see supplemen-
tary fig. S4, Supplementary Material online), suggesting that
the tree underlying the data set is indeed equidistant. We
further present the equidistant tree returned by LASSO on
the simulated partial distance matrix in figure 5. Note that this
tree contains all 26 input taxa. Furthermore, its topology is
highly similar to that produced, on the full distance matrix,
within the original study (West et al. 2014). Most importantly,
the groupings of the American, Far Eastern, and European
strains are preserved, as is the separation of the United
Kingdom- and non-United Kingdom-derived strains within
the European group. Furthermore, the putative European/
Far Eastern hybrid strains N 17 and N 45 are located within
the tree at positions consistent with such an evolutionary
history. Although some minor changes in topology are seen
within the European and American groups, the relationships
within the Far Eastern group are wholly preserved once 10%
of distances have been removed.

As LASSO’s ability to reconstruct an equidistant tree from a
partial distance matrix depends both on which distances are
missing and on which ties are broken at random by the al-
gorithm, we also constructed a consensus tree for the yeast
data set. The resulting consensus tree (fig. 6) is again highly
congruent with the full distance matrix tree, and differs from
figure 5 only in the relationship between the three European
strains Q89_8, Q95_3, and S36_7. Noticeably, the support for
the bifurcation of the latter two strains is the only one in
figure 6 less than 74.

Supertree Reconstruction on Two Overlapping Wheat
Data Sets

Next, we analyzed two partially overlapping wheat genetic
marker data sets in order to evaluate the potential of LASSO

as a supertree reconstruction approach. The equidistant trees,
TA and TB, resulting from separate LASSO analyses of data sets
A and B, were found to be supported by 77,577 (out of
84,255) and 6,844 (out of 6,903) distance values from dA

and dB, respectively, and are shown in supplementary figures
S5 and S6, Supplementary Material online. The trees within
these figures also contain branches colored by population
group membership, as described in Materials and Methods.
For both data sets, we see that accessions belonging to the
same population group are largely clustered within the equi-
distant trees. The large sizes of the two Lassos (encompassing
92.1% and 99.1% of distance values within dA and dB, respec-
tively), together with the consistency of population grouping
across the equidistant trees, strongly suggest the suitability of
the LASSO approach in determining the genetic relationships
between accessions within both of these data sets.

In total, the resulting partial distance matrix D contained
90,814 entries (where we exclude entries of the form D(x, x)
and only count entries of the form D(x, y) and D(y, x) once)
which equates to 28.1% missing values of the potential
126,253 distance values for 503 taxa. We depict supertree S,
estimated from D using LASSO, in figure 7 and remark in pass-
ing that it contains all 503 input taxa and that the size of the
strong lasso returned by LASSO supporting S is 89,642. Put
differently, S is the unique equidistant tree that displays cor-
rectly 98.7% of the 90,814 distance values for D.

Mantel tests comparing S with the two individual LASSO

trees, TA and TB, showed a positive correlation of 0.57 and
0.47, respectively, with P-values for both being 0.0009990.
These results indicate that S displayed relationships be-
tween accessions within the two data sets appropriately,
including the overlapping accessions. The results of addi-
tional comparisons with five leading supertree approaches,
together with characteristics of the algorithms assessed, are
shown in table 1.

Notably, the PHYSIC and PHYSIC_IST algorithms failed to
produce an adequate supertree for this data set, resulting in
a star tree and the input trees, respectively, and were not
considered further. Considering the remaining four approaches,
although LASSO does not perform optimally for any of the dis-
tance measures, each of which can be thought of as represent-
ing a different aspect of tree comparison, it places second for
the majority of the eight comparisons. Furthermore, when
taking the average of pairs of comparisons over the two
subdata sets (e.g., of DRFðTA; SjAÞ and DRFðTB; SjBÞ), LASSO is
the only one of the four algorithms that does not perform least
well for any of the distance measures. It is also noticeable that
other algorithms may perform much better on one sub-data
set than on the other, whereas LASSO generally performs equally
well on both. For example, the BUILDWITHDISTANCES supertree is
most similar to one sub-data set for three of the distance
measures (i.e., DTðTA; SjAÞ; DSSðTB; SjBÞ, and DASðTB; SjBÞ)
while also being least similar to the other sub-data set for
the same distance measure (i.e., DTðTB; SjBÞ; DSSðTA; SjAÞ,
and DASðTA; SjAÞ).

Although we did not compare the speed of the different
approaches formally, due in part to our use of the third-party
software EPoS (Griebel et al. 2008) to run two of them, we
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noted that FLIPSUPERTREE performed most rapidly on this data
set (<10 s), whereas both LASSO and modified MINCUTSUPERTREE

analyzed it in tens of seconds, with BUILDWITHDISTANCES taking
tens of minutes. In conclusion, LASSO performs as well as (or in
some cases better than) five leading supertree approaches on
this challenging data set, even though it was not developed
specifically for the reconstruction of supertrees. Furthermore,
its returned supertree possesses several desirable properties
and characteristics (e.g., edge-weights, uniqueness), not all of
which could be produced or guaranteed by the alternative
approaches.

Concluding Remarks
In this article, we introduce the novel LASSO approach for
distance-based equidistant phylogenetic tree reconstruction
from partial distance matrices. Furthermore, we illustrate its
potential as a supertree reconstruction approach. Computer
code for the LASSO algorithm, together with an accompanying
manual, has been developed and is freely available from
https://www.uea.ac.uk/computing/lasso.

LASSO is similar in spirit to UPGMA but takes as input either
partial or complete distance matrices, as opposed to the
complete distance matrices required by UPGMA. It aims to
reconstruct a unique (in a well-defined sense), equidistant
tree by exploiting redundancy in a given distance matrix
rather than by trying to estimate missing distance values, as
do approaches such as that presented in Criscuolo and
Gascuel (2008). Given the growing number and size of
high-throughput biological data sets, and the prevalence of
accompanying missing data, the availability of an approach
that can rapidly handle such data sets is timely. Furthermore,
LASSO trees can be exploited as starting trees within a search of
tree space, particularly when undergoing analysis by compu-
tationally intensive phylogenetic methods such as Maximum
Likelihood and Bayesian Inference (Burbrink and Castoe 2009;
Bouckaert et al. 2014). Indeed this utility could be viewed as
setting the scene for the development of novel likelihood-
based approaches to the phylogenetic analysis of partial data

sets, exploiting LASSO as a guide tree in order to limit tree
parameter space exploration.

We assessed the performance of LASSO as a tree reconstruc-
tion approach within a simulation study. We considered three
different types of binary equidistant tree and found that, in-
dependent of the tree type, LASSO performed strongly when
10% or fewer of distance values were missing. For higher
percentages of missing distance values, performance was
strongly affected by the equidistant tree type. We observed
that the equidistant caterpillar tree was recovered most ac-
curately under this scenario, with the equidistant Yule–
Harding and balanced trees faring less well. We also found
that LASSO performed well when the equidistant tree under-
lying a given partial distance did not possess polytomies of
too high a degree in the presence of a high proportion of
missing values. For example, even with 10% of distance values
missing for an underlying equidistant tree with vertices of
maximal out-degree 20, LASSO was still able to return a tree
on more than 90% of the original taxa.

We also assessed the performance of LASSO on two real
biological data sets. In the first of these studies, a yeast data
set derived from a whole-genome resequencing study, origi-
nally developed and analyzed in West et al. (2014), was suc-
cessfully analyzed with LASSO, even with 10% of distance values
removed at random. Furthermore, we showed that LASSO’s
performance was robust to the choice of missing values. In
the second study, LASSO was used to construct a supertree of
two partially overlapping wheat NBS marker data sets (Reeves
et al. 2004; Sayar-Turet et al. 2011). Subsequent statistical tests
showed both that the LASSO supertree appropriately displayed
relationships found within the two original data sets and that
it was as congruent with the two input trees, or in some cases
more so, as those supertrees constructed by five leading
supertree algorithms. Importantly, for both of these data
sets LASSO was able to return trees comprising 100% of the
starting taxa. Collectively, these studies suggest that LASSO

could be a highly useful method for both tree and supertree
reconstruction on real data sets.

Table 1. Characteristics and Results of Six Supertree Algorithms which Can Be Used to Construct Trees and Supertrees (or Both) from (Partial)
Distances when Applied to the Wheat NBS Data Sets A and B.

Algorithm Tree Method? Supertree Method? Edge-Weighted? Adequate Supertree? DRFðTA; SjAÞ DRFðTB; SjBÞ

LASSO � � � � 0.311275 0.416309

Modified MINCUTSUPERTREE � � � � 0.505590 0.441441

BUILDWITHDISTANCES* � � � � 0.049261 0.381974

FLIPSUPERTREE* � � � � 0.068627 0.253219

PHYSIC � � � � — —

PHYSIC_IST � � � � — —

Algorithm DTðTA; SjAÞ DTðTB; SjBÞ DSSðTA; SjAÞ DSSðTB; SjBÞ DASðTA; SjAÞ DASðTB; SjBÞ

LASSO 0.000346 0.002159 0.926605 0.887092 0.473567 0.457534

Modified MINCUTSUPERTREE 0.000520 0.001363 0.875586 0.931511 0.454063 0.477384

BUILDWITHDISTANCES* 0.000297 0.002394 0.992379 0.878096 0.497626 0.452113

FLIPSUPERTREE* 0.000539 0.001936 0.981233 0.924485 0.492873 0.470559

PHYSIC — — — — — —

PHYSIC_IST — — — — — —

NOTE.—Methods denoted with an asterisk refer to those versions of the relevant algorithm as implemented within the EPoS software (Griebel et al. 2008).
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It is interesting to speculate that the strong performance of
LASSO in a supertree context owes part of its success to its
ability to reject shared distances that are not highly correlated.
Indeed, when we repeated our Mantel tests comparing the
equidistant supertree derived from the full combined data set
(i.e., not rejecting any shared distance values) to the two
separate distance matrices (dA and dB), the correlations
were found to be 0.47 (P = 0.0009990) for both data sets.
Although this performance is almost identical for data set
B, we see that removing certain shared distances leads to a
highly improved result for data set A, which we earlier noted
possessed a lower proportion of distance values within the
LASSO. In future, an investigation of methods to combine data
sets for supertree construction would be highly valuable, to
see whether a further improvement could be obtained.

Additional future work should also focus on understanding
the affects of data error upon LASSO tree reconstruction.
Of course, the LASSO algorithm makes decisions regarding
which distances contribute toward the final strong lasso,
which could be viewed as a form of error smoothing.
Consequently, some information regarding potential sources
of error may be derived directly from algorithm runs. In ad-
dition, simulation studies with carefully controlled error
models will enable us to assess the accuracy of LASSO in a
range of scenarios and parameter spaces.

Further studies might include developing new methods to
update the distance matrix D (i.e., Reduction step (ii)) during
a LASSO iteration. For example, it might be interesting to relax
the consistency requirement slightly by saying that the dis-
tances in the computed tree will only be approximately equal
to the distances given in the partial distance matrix for each
outputted cord. Such a relaxed result could be obtained, for
example, by removing outliers using a standard statistical
method and then computing the mean. The advantage of
this distance would be that LASSO would remain robust to
noisy data, potentially alleviating some of the error effects
that we plan to investigate. Other distance matrix updating
methods might enable a greater number of taxa to be in-
cluded in the returned strong lasso for some data sets, al-
though this might come at the expense of a greater
computation time. Also it might be interesting to investigate
the LASSO approach in a “relaxed” molecular clock framework
(Drummond et al. 2006).

Finally, we are currently developing NGS data sets for a
large number of yeast strains, where polyploidy and recom-
bination are known complications within genetic analyses.
Consequently, a study on the performance of Lasso on SNP
data sets derived from our NGS reads, based on a range of
distance measures, would be highly interesting. We could, for
example, compare the accuracy of Lasso when applied to
(partial) distances such as those introduced recently in Joly
et al. (2015) for SNP data sets with older methods developed
for allele frequences (Cavalli-Sforza and Edwards 1967).

In summary, we propose the LASSO approach, and accom-
panying computer software, as a key new method within the
molecular phylogenetics toolkit. Given its demonstrated po-
tential both in tree reconstruction in the face of missing data,
and in supertree reconstruction, we believe that it can play an

important role in analyzing the next generation of biological
data sets.

Materials and Methods
To help explain the inner workings of LASSO, we first introduce
some relevant terminology and then present an outline of the
LASSO approach. For the convenience of the reader, we also
present a worked example.

Basic Terminology and Assumptions

We assume throughout this section that X is a set containing
at least two taxa. Furthermore, a rooted tree T whose leaf set
is X is a “phylogenetic tree” on X. In such a tree T, no vertex
connects only two edges except for a distinguished vertex
which we call the “root” and denote by �T.

An “edge weighting” ! of T is a map that assigns a positive
real number to every edge of T. The pair (T,!) is then called an
edge-weighted (phylogenetic) tree on X. Following Semple
and Steel (2003), we call an edge-weighted tree on X equidis-
tant if 1) the distance (i.e., the sum of edge-weights on a path)
between the root and every leaf is the same, and 2) for all taxa
x in X, the distance between a vertex u and x is larger than the
distance between a vertex v and x whenever u is encountered
before v on the path from the root �T to x. For convenience,
we will sometimes refer to the underlying graph of an equi-
distant tree as its topology.

To illustrate these definitions, consider the tree T depicted
in figure 1(ii), a phylogenetic tree on the taxa set
X ¼ fa; . . . ; fg. If the edge-weighting ! assigns the value 1
to every edge of T, then (T,!) is rendered an equidistant tree
on X. Consequently, for example, the distance between a and
d is 4.

Next, suppose L is a set of cords on X, that is, a subset of
all possible pairs of taxa in X. It is often helpful to view such
a set L as a graph GðLÞ, which we alternatively term GðLÞw

when an edge-weighting w has been assigned. In such a
graph, which we term a “graph of cords,” taxa x and y
in X are only joined by an edge if xy 2 L. Figure 1(i)
illustrates such a representation for the set
L ¼ fbd; bf ; df ; cd; ab; efg.

Furthermore, we say that L is a strong lasso for T if
L uniquely determines both the topology and an equidis-
tant edge-weighting of T (we refer the reader to the Appendix
for a precise definition of this concept). For example, for X
¼ fa; . . . ; fg and L ¼ fbd; bf ; df ; cd; ab; efg, the latter de-
picted as graph GðLÞ in figure 1(i), it follows from Huber and
Popescu (2013) thatL is a strong lasso for the tree T depicted
in figure 1(ii). However, once we remove the cord df from L
then the resulting cord setL0 is no longer a strong lasso for T.
This result follows as both T and the tree T0 depicted in figure
1(iii) agree on the distances between the taxa pairs in L0,
thus violating the uniqueness property required of a strong
lasso.

The LASSO Algorithm

Here, we present an outline of the LASSO algorithm (see the
Appendix for precise definitions and pseudocode and the
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supplementary material, Supplementary Material online, for a
more formal presentation of LASSO). As LASSO employs a similar
strategy to UPGMA, we begin by giving a brief outline of the
latter method.

UPGMA is a hierarchical clustering method on some
taxa set X (of size n � 2) for which a complete distance
matrix D is known. It begins with a graph G of n isolated
vertices, each labeled by a taxon in X. Through a series of
n� 1 iterations, a phylogenetic tree that represents D is
grown in a bottom up fashion. Within each iteration, a
reduction step and a construction step are carried out. In
the reduction step, the two closest elements x and y are
replaced by a composite element vx;y and an average mea-
sure of distance is used to determine the distance from a
composite vertex to the other vertices in the distance
matrix, thereby obtaining a new distance matrix D0 on
the reduced taxa set X0. In the construction step, an equi-
distant tree whose root is labeled by vx,y is created by
adding new edges from x and y to vx,y (noting that one
or both of x and y might themselves be the roots of
equidistant trees constructed in previous iterations).
UPGMA is known to return the tree underlying a given
distance matrix if the (complete) distance matrix used as
input obeys the molecular clock assumption and the un-
derlying equidistant tree does not possess polytomies
(Durbin et al. 1998).

The LASSO approach is also an iterative approach consisting
of a reduction step and a construction step. Furthermore,
these steps both serve a similar purpose to their counterparts
in UPGMA. In contrast to UPGMA, LASSO takes as input a
partial distance matrix on X (which can of course also be
complete). The LASSO algorithm proceeds as follows.

Method Outline
Given a partial distance matrix D on some taxa set X, LASSO

heuristically finds a subset Y(� X) of taxa as large as possible
such that the equidistant tree it returns is uniquely deter-
mined, with regards to topology and edge-weighting, by the
available distances on Y. To achieve this, LASSO employs the
following recursive strategy.

Construction step:

i) One or more sets of cords on X that satisfy certain
properties, and which we term cliques, are identified
and stored in the set C (i.e., C ¼ fK1; . . . ; Krg, for

some positive integer r, where each element Ki is a
set of cords on X). These properties are as follows:

a) The graph G(Ki) of the cords in a given Ki is connected
and, furthermore, any two of its vertices are joined by
an edge (i.e., the set of cords Ki is a clique).

b) All cords in a given Ki that satisfies property (a) possess
the current smallest edge-weight m according to the
distance matrix D (i.e., the set of cords Ki is a clique with
minimal distance).

For instance, for the worked example discussed

below, m = 2 and the set C comprises the sets

K1 ¼ fbc; bd; cdg and K2 = {ab}.

ii) If C comprises only cliques that contain a single vertex,
the algorithm terminates and the current equidistant
tree(s) on taxa Y and the respective strong lasso(s) are
saved. Otherwise, an optimal clique K is chosen from
the elements in C. When C contains more than one
clique, the largest is chosen heuristically or, if two or
more possess the largest size, one is chosen at random.
We term K the “suitable clique” for the current itera-
tion. For example, in the worked example alluded to
above, K ¼ K1 ¼ fbc; bd; cdg as it is the larger of the
two identified cliques.

iii) An equidistant tree (U,!) is grown from K. First, each
of the vertices v of K is joined through a new edge to a
new root vertex u, thereby obtaining the tree U. The
vertices in K belong to one of two categories in that
they either represent those vertices present in the
starting taxa set or that they represent composite ver-
tices w from previous iterations, which will have been
the roots of equidistant trees Tw constructed within
those iterations. Let v1 represent a vertex of the former
category and v2 a vertex of the latter. Next, the “root
height” hv of each vertex v in K is determined. For each
vertex v1 in K, where a tree with v1 as the root can only
consist of v1 itself, hv1 = 0. For each vertex v2 in K,
hv2
¼ Dðx; yÞ=2, where x and y are leaves of Tv2

such
that v2 lies on the path joining x and y. Finally, we
assign edge-weights to all edges in U. Each edge in U
that was an edge in a Tv2

from a previous iteration is
assigned its previous weight in that tree. All new edges,
connecting vertex v to the root vertex u, are assigned
the weight ðm=2Þ � hv.

iv) Move on to the Reduction step.

Reduction step:

i) All taxa that are vertices of K are replaced with a new,
composite element u. An updated taxa set X0 is found
by removing all taxa in K and adding u (i.e., the size of
the taxa set may reduce by more than one in a single
step).

ii) An updated distance matrix D0 is calculated for the
new X0. For any two taxa x and y that are not vertices in
K, we keep D0ðx; yÞ ¼ Dðx; yÞ and set D0ðu; uÞ ¼ 0.
Next, for each vertex x not in K we define D�ðu; xÞ
to be the mode of all distances D(v, x), where v is any

FIG. 1. The graph GðLÞ in (i) represents the set of cords
L ¼ fbd; bf ; df ; cd; ab; efg on X ¼ fa; . . . ; fg. Consider two trees,
T in (ii) and T0 in (iii), to which the edge-weightings ! and !0 both
assign weight 1 to each edge, respectively. L is a strong lasso for T.
However, L0 ¼ fbd; bf ; cd; ab; efg is not a strong lasso for T, as the
distance induced on T by any two elements of a cord in L0 is
identical to that induced on T0.
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vertex in K and ignoring any distance Dðv; xÞ ¼ m
which effectively removes x from X0 (this latter condi-
tion ensures that the set of cords returned by LASSO is
correct for the equidistant tree grown by it). Where we
have a tie for the modal distance, one is chosen at
random. Finally, we set D0ðu; xÞ ¼ D�ðu; xÞ.

iii) Set X ¼ X0 and D ¼ D0 and return to the
Construction step.

Figure 2 illustrates the concepts of a “clique” and a “suit-
able clique.” Note that the important property
(Construction step (i)b) that the cords in a suitable
clique are mutually closest to one another makes this
step analogous to the Construction step of UPGMA,
where the two closest vertices are selected. Within
Reduction step (ii), other choices for D* are conceivable,
such as defining D�ðu; xÞ to be the distance in which one
has most confidence over all distances D(v, x). A further
alternative is to take the mean over all distances D(v, x), as
for average linkage. However, it should be noted that the
latter case cannot be guaranteed to give rise to a strong
lasso for the returned equidistant tree as the mean need
not be one of the original distance values. Finally, note that
the heuristic nature of the algorithm (and in particular the
potential for random decisions in Construction step (ii)
and Reduction step (ii)), means it will not always return
the same equidistant tree for a given data set (e.g., the
number of leaves may differ between consecutive runs).
Consequently, the algorithm is currently set to run a de-
fault ten times and to return the equidistant tree (plus
underpinning strong lasso) with the largest number of
leaves, again breaking ties randomly.

An Example

To illustrate the LASSO approach, imagine that X ¼ fa; . . . ; eg
is a taxa set and that D is a partial distance matrix on X given
in terms of the edge-weights of the graphGðLÞw presented in
figure 3(i). The set C computed in Construction step (i) of the
first iteration contains two cliques, with cord sets {ab} and
{bc, bd, cd}, respectively, with each cord in each cord set
possessing the minimal edge-weight m = 2. The larger of the
two cliques is shown in figure 3(ii), and is thus chosen as the
suitable clique K. As the trees with roots b, c, and d, respec-
tively, are the vertices b, c, and d themselves, hb, hc, and hd all
equal zero. The equidistant tree ðU; !Þ grown by LASSO in
Construction step (iii) is then that depicted in figure 3(iii).
Here, the weights of the new edges joining b, c, and d to root u
are each assigned the value ðm=2Þ � hv ¼ ð2=2Þ � 0 ¼ 1. In
the Reduction step, the set X is updated to X0 ¼ fu; a; eg. In
updating D to D0 the cord ab is effectively removed, as it
possesses the edge-weight 2 (i.e., m), thereby leaving
D0ðu; aÞ ¼ D�ðu; aÞ ¼ 4. A random choice between edge-
weights 6 and 8 is made for the distance D�ðu; eÞ. In this
example, we choose to set D0ðu; eÞ ¼ D�ðu; eÞ ¼ 6, effec-
tively deleting the cord de. The distance D0 on this new set
X0 is represented in terms of the graph GðL0Þw displayed in
figure 3(iv). This completes the first iteration and we return to
the Construction step.

As the set C in the second iteration consists of precisely
one set of cords (i.e., the set {ua}), we choose this set to be K.
We next grow an equidistant tree ðU0; !0Þ by creating new
edges from u and from a to a new root vertex u0, noting that
m = 4 within this iteration. We then calculate that ha = 0 and
hu ¼ Dðb; cÞ=2 ¼ 1. Consequently, we assign the weight
ðm=2Þ � ha ¼ ð4=2Þ � 0 ¼ 2 to the edge connecting a to
u0 and ðm=2Þ � hu ¼ ð4=2Þ � 1 ¼ 1 to the edge connecting
u to u0. The resulting tree ðU0; !0Þ is shown in figure 3(v). We
complete the second iteration by updating X to the set fu0; eg
and the distance matrix D to Dðu0; eÞ ¼ 6, as depicted in
figure 3(vi), and return to the Construction step.

In the third iteration, the set C again consists of a single set
of cords (i.e., the set fu0eg) which we choose to be K. We next
grow an equidistant tree ðU00; !00Þ by creating new edges from
u0 and from e to a new root vertex u00, noting that m = 6
within this iteration. We calculate that he = 0 and hu0 ¼ Dða
; dÞ=2 ¼ 2 and we assign weight ðm=2Þ � he ¼ ð6=2Þ � 0
¼ 3 to the edge connecting e to u00 and ðm=2Þ � hu0 ¼ ð6=
2Þ � 2 ¼ 1 to the edge connecting u0 to u00. The resulting
tree ðU00; !00Þ is shown in figure 3(vii). We complete the third
iteration by updating X to the set fu00g and the distance
matrix D to Dðu00; u00Þ ¼ 0 and return again to the
Construction step.

As the set C in the fourth iteration contains only one clique
and that clique has one vertex, LASSO terminates and saves the
tree ðU00; !00Þ which is strongly lassoed by the available dis-
tances on Y ¼ X ¼ fa; b; c; d; eg. We depict those distances
in terms of the graph GðLYÞ

w00 in figure 3(viii) and start the
next run of LASSO. As the only decision taken at random was a
choice between cords {ce} and {de} within the Reduction step
of the first iteration, it follows that the only alternative LASSO

tree to that shown in figure 3(vii) would possess an identical
topology but the edge-weights of cords fu00eg and fu00u0g
would instead be 4 and 2, respectively.

Lasso’s Performance in the Face of Missing Data

Missing data are a key problem in biological research.
Although LASSO enjoys theoretical features that may help to
mitigate this problem (see Appendix for details), its success in
dealing with missing data in practical situations has yet to be
tested formally. Therefore, to assess the performance of LASSO

FIG. 2. (i) The graph GðLÞ of L ¼ fab; ac; ad; bc; cdg is not a clique
as the edge joining vertices b and c are missing. Conversely, the graph
GðL0Þ of L0 ¼ fab; ac; ad; bc; bd; cdg is a clique. However, its
weighted version GðL0Þw with edge-weighting w as indicated in (ii)
is not a suitable clique as not all edges have the same (minimum)
weight. (iii) The graph GðL0Þw of L0 with w as indicated is a suitable
clique as all pairs of edges are joined by cords and all edge weights are
the same and have minimal weight.
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in reconstructing trees from partial distance matrices, while
controlling key aspects of the input data, we carried out a
simulation study similar in spirit to that presented in
Criscuolo and Gascuel (2008). Furthermore, we applied
LASSO to a yeast data set (West et al. 2014) recently developed
from a whole-genome resequencing study (Liti et al. 2009), in
order to gauge its performance on a real biological data set.

Tree Reconstruction from Simulated Partial Distance
Matrices
To understand how the topology of an equidistant tree af-
fects our ability to reconstruct it from a partial distance
matrix, we generated three distinct binary tree types:
Balanced trees, caterpillar trees, and trees generated using
the Yule–Harding model. Partial data set simulation followed
a three-step process. In step 1, we implemented the approach
described in Semple and Steel (2003, Section 2.5) to produce
unweighted trees of the required topology type. In step 2, we
turned each of the resulting trees into an equidistant tree. For
balanced trees, this meant assigning weight 1 to all edges. For
caterpillar trees, we instead assigned the difference in height
between two adjacent vertices to the weight of the joining
edge. The Yule–Harding tree case was slightly more complex
and proceeded as follows. Starting with a Yule–Harding tree
T, we first assigned to every vertex v of T its height in T, that is
the number h(v) of edges on a longest path from v to a leaf of
T below v, where we put h(v) = 0 in cases where v was a leaf.
For e an edge of T joining two vertices u and v, we then
assigned jhðuÞ � hðvÞj as weight to e. In the final step, an
incomplete distance matrix was generated for each tree. This
was carried out by randomly removing a given percentage
Pmiss of entries from the (complete) distance matrix induced
from each tree, while ensuring that the graph GðLÞ of the
associated set of cords remained connected.

Using this process we generated 2,500 incomplete distance
matrices for each of the three equidistant tree types, 500 for
each of the Pmiss values of 1%, 5%, 10%, 20%, and 30%. Across
all simulations, we took the size of the leaf sets to be 128. We

then used the resulting 7,500 partial distance matrices as
input to LASSO. Each equidistant tree found by LASSO was
then compared with the respective equidistant tree ðT0; !0Þ
used to generate the underlying input matrix. More precisely,
for Y denoting the leaf set of a tree (T,!) returned by LASSO, we
computed the Robinson–Foulds distance (Robinson and
Foulds 1981) DRFðT; T0jYÞ between T and the restriction
T0jY of T0 to Y. This amounted to counting the number of
clusters induced by T0jY but not by T and vice versa. We then
normalized these distances by dividing them by the maximal
Robinson–Foulds distance between two trees on X, 2ðn� 2Þ,
where n denotes the number of elements in X. For each of the
15 equidistant tree type and percentage Pmiss combinations,
we then calculated the mean of the relevant 500 normalized
Robinson–Foulds distances, with the resulting mean values
depicted in figure 4(i). We also refer the reader to supplemen-
tary tables S1–S3, Supplementary Material online, for some
simple statistical measures on the supporting strong lassos.

Finally, we investigated the influence of a tree’s maximal
vertex out-degree k on LASSO’s performance, where by vertex
out-degree we mean the number of edges starting at that
vertex. Specifically, we generated 500 random equidistant
trees ðT0; !0Þ, 125 for each of the maximum vertex out-
degree values of k = 2, 5, 10, and 20, as described in
Algorithm 1 (supplementary material, Supplementary
Material online). For all 500 trees, the number of taxa in X
was 100.

Tree Reconstruction from a Yeast Partial Data Set
To test LASSO on a real biological data set, again as a tree
reconstruction approach in the face of missing data, we ap-
plied it to a distance matrix generated for the analysis of
several intraspecific strains of yeast. In West et al. (2014),
the authors identified both fully and partially resolved SNPs
(i.e., SNPs and pSNPs) within the ribosomal DNA (rDNA)
tandem arrays of 26 strains of the wild yeast Saccharomyces
paradoxus. Within this study, a distance matrix was con-
structed from the resulting allele frequency data set using

FIG. 3. The graph GðLÞw in (i) represents the weighted set of cordsL ¼ fab; ad; bc; bd; cd; ce; deg on X ¼ fa; . . . ; eg. The suitable clique K identified
in the first iteration of LASSO upon the corresponding partial distance matrix D, and consisting of the cords {bc, bd, cd}, is shown in (ii). For clarity, we
have also included edge-weights. From K, an equidistant tree ðU; !Þ (iii) is subsequently grown and the taxa set and associated partial distance matrix
are reduced to those represented by graph GðL0Þw

0

in (iv). The equidistant tree ðU0; !0Þ grown in the second iteration of LASSO is shown in (v), with the
reduced taxa set and partial distance matrix represented by graph GðL00Þw

00

in (vi). The third iteration of LASSO results in the equidistant tree ðU00; !00Þ
shown in (vii) which is the final tree and thus returned by LASSO. Finally, GðLYÞ

wY in (viii) depicts the strong lasso returned for D rendering the tree
shown in (vii) the unique tree that correctly represents the distance indicated in (viii).
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the Cavalli-Sforza and Edwards Chord distance measure
(Cavalli-Sforza and Edwards 1967) and a phylogenetic tree
was estimated using Neighbor Joining. The tree was rooted
by analyzing rDNA variation in S288c, the type strain of the
closely related baker’s yeast Saccharomyces cerevisiae.

We first applied both UPGMA and LASSO to the complete
distance matrix from this study. From the distance matrix D
induced by the LASSO-tree we then randomly removed 10% of
the distance values ensuring that 1) whenever we removed
for two strains x and y the distance value D(x, y) we also
removed the distance value D(y, x), 2) values of the form

D(x, x) for strain x did not count toward the removed 10%,
and 3) the graph GðLÞ remained connected (where L de-
notes the pairs of taxa between which distance values are
available).

Next, we constructed a consensus tree for the yeast data
set, using an approach similar to bootstrapping. Within this
approach we counted the number of times clusters induced
by nonleaf (and nonroot) vertices were displayed on equidis-
tant trees returned by LASSO. More precisely, we generated 100
partial distance matrices with 10% missing values chosen at
random, as described above. We then ran LASSO on each

FIG. 5. An equidistant tree returned by LASSO from the yeast data set with 10% of the distances removed at random. The 16 European strains are
denoted by the label “Eu,” the 4 Far Eastern strains by “FE,” and the 6 American strains by “Am.” The uppermost five European strains (CBS5829 to
KPN3829), together with N_17, derive from outside the United Kingdom, with the remaining ten European strains having been isolated within the
United Kingdom.

FIG. 4. (i) For all three equidistant tree types with 128 leaves, we plot the mean normalized Robinson–Foulds distances between T and T0jY , over data
sets with varying proportions of missing values. (ii) For T0 , a tree with 100 leaves and maximum out-degree k = 2, 5, 10, and 20, we depict the proportion
of X which forms the leaf set of T.
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partial distance matrix, resulting in a total of 100 equidistant
trees each supported by, on average, a strong lasso with 205
cords (out of the possible 293). The resulting trees were then
used as input to the CONSENSE program (Felsenstein 2004) with
default settings to build a consensus tree using the “majority
rule (extended)” option.

Lasso as a Supertree Reconstruction Method

We further assessed the potential of LASSO as a supertree re-
construction approach by combining two partially overlap-
ping wheat data sets developed in distinct studies (Reeves
et al. 2004; Sayar-Turet et al. 2011). The first data set (to which
we will refer as data set A) consists of 57 NBS (nucleotide
binding site) markers scored over 411 accessions, a subset of a
data set developed within the GEDIFLUX EU Framework V
project (Reeves et al. 2004) to assess genetic diversity over
time across four major crops, including wheat. The second
data set (to which we will refer as data set B) consists of 71
NBS markers scored over 118 accessions, a subset of a study
comparing genetic diversity within and between winter
wheat accessions from Turkey, Kazakhstan, and Europe
(Sayar-Turet et al. 2011), the latter comprising a small
group of the GEDIFLUX wheat accessions. Consequently,
the two data sets share a common set of 26 European
winter wheat accessions, comprising 6.3% and 22.0% of
their accessions, respectively. We will refer to this shared
data set as data set C. Equidistant trees were estimated for
data sets A and B separately, using the Modified Rogers mea-
sure (Reif et al. 2005) to calculate a (complete) distance
matrix, followed by tree construction with LASSO. For conve-
nience, we denote the two distance matrices as dA and dB,
where the index indicates the data set to which they refer.

We then assessed the individual LASSO trees according to
population group data for the two data sets. In the original
analysis of data set B (Sayar-Turet et al. 2011), the model-
based clustering method STRUCTURE (Pritchard et al. 2000)
was carried out to estimate the number of founder popula-
tions underlying the data set and the genetic contribution of
each population to each accession. We colored branches of
the LASSO tree (see supplementary fig. S6, Supplementary
Material online) such that the color of each branch corre-
sponded to the main population group to which the relevant
accession belonged. For data set A, we conducted our own
population structure analysis, here using the ADMIXTURE
method (Alexander et al. 2009) with default parameter
values. ADMIXTURE uses an identical genetic model to
STRUCTURE, but a different computational approach to op-
timize population parameters, rendering it considerably faster
to run. See supplementary table S7, Supplementary Material
online, for the membership (Q matrix) of the three popula-
tion groups determined by ADMIXTURE for each accession in
data set A, together with an indication of the group that is
inferred to have contributed most to each accession’s genetic
material. The LASSO tree for data set A, colored according to
these groups, is shown in supplementary figure S5,
Supplementary Material online.

We next obtained a (partial) distance matrix D on the
combined data set of 411þ 118� 26 ¼ 503 accessions, pro-
ceeding as follows. If x and y were accessions such that one of
them was contained in data set A\C (i.e., in A but not in C)
and the other in A then we put Dðx; yÞ ¼ dAðx; yÞ. Similarly,
if one of them was contained in data set B\C and the other in
B then we put Dðx; yÞ ¼ dBðx; yÞ. For the remaining case that
both accessions were contained in the overlap we took the
mean, that is, we put Dðx; yÞ ¼ ðdAðx; yÞ þ dBðx; yÞÞ=2. To

FIG. 6. Consensus tree built from 100 runs of LASSO on matrices with 10% of the distance values removed at random. The number next to a vertex shows
the number of times the cluster induced by that vertex appeared in the input of CONSENSE. The length of an edge is of no relevance.
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mitigate against the fact that, for some accessions in C, the
distance values dA(x,y) and dB(x,y) correlated more strongly
than for others we used the ratio dAðx; yÞ=dBðx; yÞ to identify
outliers, which we subsequently removed from the analysis.
For this, we calculated the empirical distribution of these
ratios and defined a distance value to be an outlier if it was
more than one interquartile range above the upper quartile
or one interquartile range below the lower quartile. We then
used the resulting (partial) distance matrix as input to LASSO,
thereby obtaining a supertree S on the combined data set.

Finally, we assessed the consistency of supertree S with the
two original distances matrices, dA and dB, and we compared
the similarity of its topology to the two individual LASSO trees
TA and TB against those of supertrees constructed using five

leading alternative algorithms: Modified MINCUTSUPERTREE

(Page 2002), BUILDWITHDISTANCES (Willson 2004), FLIPSUPERTREE

(Griebel et al. 2008), PHYSIC (Ranwez et al. 2007), and
PHYSIC_IST (Scornavacca et al. 2008). For the former, we per-
formed Mantel tests between dA and dB with the correspond-
ing distance values displayed by S. For the latter, we used
either the distance matrices dA and dB or the equidistant
trees TA and TB generated from them by LASSO, as appropriate,
to construct a supertree using the five algorithms listed above.
We then restricted each supertree S to each of the data sets A
and B, resulting in the trees S j A and S j B, respectively. For
each supertree algorithm, we then measured the distance
between S j A and TA and between S j B and TB using four
different measures: Robinson–Foulds (RF), the triplet distance

FIG. 7. The equidistant supertree built by LASSO for the two wheat data sets. Accessions from the GEDIFLUX data set (A) are indicated by green
branches, those from the Turkish data set (B) by blue branches, with the 26 accessions found in both data sets (C) indicated by red branches. Note that
the shared accessions are spread across the supertree and that the tree contains all 503 input taxa.
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(T), Simple Scoring (SS), and Adjustable Scoring (AS) (as im-
plemented within the EPoS software).

Supplementary Material
Supplementary material, tables S1–S7, and figures S1–S6 are
available at Molecular Biology and Evolution online (http://
www.mbe.oxfordjournals.org/).
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Appendix
In this section, we first present some relevant definitions and
then formally define the notion of a suitable clique.
Subsequent to this, we provide a pseudocode version of
LASSO and, finally, establish some theoretical properties
enjoyed by LASSO.

Preliminaries

Suppose X is a set of at least two taxa and let T denote a
(rooted) phylogenetic tree on X. If T0 is a further rooted
phylogenetic tree on X then, following (Huber and Popescu
2013), we say that T and T0 are equivalent if they are iso-
morphic in the usual graph theoretical sense and the under-
lying map is the identity on X that maps the root of T to the
root of T0. An edge-weighting of T is a map ! that assigns to
every edge of T a positive weight. An edge-weighted rooted
phylogenetic tree on X is a pair (T,!) such that T is a rooted
phylogenetic tree on X and ! is an edge-weighting for it. For
any two taxa x and y, we define the distance DðT;!Þðx; yÞ
between x and y induced by (T,!) to be the sum of edge-
weights on the path joining x and y.

Let L denote a set of cords on X. Following Huber and
Popescu (2013), we call two equidistant trees ðT1; !1Þ and
ðT2; !2Þ on X “L-isometric” if DðT1;!1Þðx; yÞ ¼ DðT2;!2Þðx; yÞ
holds for all cords xy 2 L. Suppose that T is a rooted phylo-
genetic tree on X and L is a set of cords on X. Then, we say
that L is a strong lasso for T if for every rooted phylogenetic
tree T0 and any equidistant edge-weightings ! of T and !0 of
T0, respectively, we have that T and T0 are equivalent and that
! ¼ !0 holds whenever (T,!) and ðT0; !0Þ are L-isometric.
We denote the set of cords induced by a partial distance
matrix D on X by LD and denote the graph representing
the cords in LD by GðLDÞ.

Suitable Cliques

Central to LASSO is finding for a given set X of taxa and a partial
distance matrix a suitable clique in the graph GðLDÞ

w, where
w is an edge-weighting and D was constructed in the previous
iteration (or is the input distance matrix if within the first
iteration). To be able to define this special type of clique,
assume that m is the minimal edge-weight of the graph
GðLDÞ

w and let C denote a subgraph of GðLDÞ obtained by
first deleting all edges with weight not m (assuming that C is
chosen so that it contains an edge with weight m) from
GðLDÞ

w and then ignoring the edge-weights rendering C an
unweighted graph.

Exploiting the fact that the vertices of any clique of C can
be thought of as equidistant trees whose leaf sets are con-
tained in X or are in fact a taxon of X, we say that a clique in C
is suitable in C if, over all cliques of C, the number of taxa of X
it contains is as large as possible. Similarly, we say that a clique
is suitable in GðLDÞ if, over all subgraphs of GðLDÞ obtained
as described above, the number of taxa of X it contains is as
large as possible.

As the problem of finding such a clique further requires
solving the problem of whether a clique of a pregiven size or
more exists in a graph, and this is a well known NP-complete
problem (Garey and Johnson 1979), we use a heuristic for this.
More precisely, we start with a randomly chosen edge e in C.
Note that e is clearly a clique. Denoting that clique by Ce, and
its vertices by x and y, we check for all remaining vertices z of C
if they are adjacent with every vertex of Ce or not. In the
former case we update Ce by adding z to its vertex set and
all edges of the form {c, z} to its edge set where c is a vertex in
Ce, and in the latter case we discard z. We continue in this
fashion until we cannot enlarge Ce any further, in which case
we stop and save the found clique. To mitigate against a poor
choice of C, we repeat this process k-times (ignoring edges
that are chosen more than once) where k is a parameter that
is currently set to 10. The clique that, over all found cliques,
has the largest number of leaves is the clique that we take as
the suitable clique.

The Lasso Algorithm in Pseudocode Form

Algorithm 1 A pseudocode version of LASSO

Input: Partial distance matrix D on X.
Output: A subset L0 of cords of LD and an equidistant tree
(T,!) on Y ¼ [xy2L0xy that is strongly lassoed by it such that
Y and L0 are as large as possible and DðT;!Þðx; yÞ ¼ Dðx; yÞ
holds for all xy 2 L0.

0. Put X0 ¼ X and D0 ¼ D
1. For m :¼ minxy2LD

D0ðx; yÞ, delete all edges with weight
not m from GðLD0 Þ

w and ignore all edge-weights to
obtain an unweighted graph.

2. Using the above heuristic compute the suitable
cliques of the generated graph and collect them in
the set C.
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3. Choose a suitable clique K in C that has at least two
vertices. If no such clique exists terminate and save the
tree(s) and the found set(s) of cords that strongly lasso
them, respectively.

4. Join the vertices of K through an edge to a new vertex u to
obtain the tree U. Define the equidistant edge-weight !
for U using the edge weightings of the equidistant trees
under consideration and their root height (see Materials
and Methods for details).

5. Update the set X0 by deleting all vertices in K and adding
the vertex u. Using the definition of D� (see Materials and
Methods for details), update D0 to a new distance matrix
on X0.

6. Return to step 1.

We remark that steps (1)–(3) correspond to Construction
step (i) and (ii) in the main text and that the definition of
D0 might further reduce X0. Also, to mitigate against poor
choices, we currently run the algorithm ten times for a
given input data set and return the equidistant tree with
the highest number of leaves (plus its underpinning strong
lasso) over all those runs. Finally, for efficiency reasons, we
have replaced step 2 in our implementation of LASSO by first
randomly choosing a connected component of the graph
generated in step 1 and then finding a suitable clique in
that component.

Theoretical Properties of LASSO

In this section, we present theoretical properties enjoyed by
LASSO. As before, let Y,LY , and ðTY; !YÞ denote the output of
LASSO for a partial distance matrix D on a taxa set X.

Theorem 1

Suppose D is a partial distance matrix on X. Then LY is a
strong lasso for TY. Furthermore, if there exists an equidistant
tree (T,!) such that DðT;!Þðx; yÞ ¼ Dðx; yÞ for all xy 2 LD and
LD is a topological lasso for T then LY is a strong lasso for T
and the equidistant tree returned by LASSO is (T,!). In particular,
if D is a complete distance matrix on X then the equidistant tree
returned by LASSO is (T,!).

Proof

By construction, for any interior vertex v of TY the child-
edge graph of v is a clique (Huber and Popescu 2013). Thus, by
Huber and Popescu (2013, Theorem 7.1), LY is a topological
lasso for TY. By Huber and Popescu (2013, Corollary 7.3) it
follows that LY is a strong lasso for TY.

For the remainder, assume that there exists an equidistant
tree (T,!) such that DðT;!Þðx; yÞ ¼ Dðx; yÞ for all xy 2 LD.
Assume first LD is a topological lasso for T. In view of the
remark following the presentation of the pseudocode version
of the LASSO algorithm, let S denote a connected component
of the graph generated in step 1 of that presentation and let K
denote a suitable clique in S. Then, as (T,!) is an equidistant

tree and DðT;!Þðx; yÞ ¼ Dðx; yÞ holds for all x; y 2 X it follows
that every vertex in S is also a vertex in K. Thus, S is itself a
suitable clique. Furthermore, asLD is a topological lasso for T,
GðLDÞ is connected (Huber and Kettleborough, submitted)
and, so, there must exist an edge in GðLDÞ joining a vertex
contained in S with a vertex not contained in S. In combina-
tion, this implies that every such edge that joins a vertex in S
with the same vertex not contained in S must have the same
weight inGðLDÞ

w. Consequently, no vertex is discarded in the
computation of the new set X0 and no distance value is
removed when taking the mode to recompute the distance
matrix. This implies that LY is also a topological lasso for T
and thus a strong lasso for it. As DðT;!Þðx; yÞ ¼ Dðx; yÞ
¼ DðTY;!YÞðx; yÞ holds for all xy 2 LY , it follows that T and
TY must be equivalent and !Y ¼ !. Thus, the equidistant
tree returned by LASSO is (T,!).

Now assume that D is a complete distance matrix on X.
Then,LD is in particular a strong lasso for T and therefore also
a topological lasso for T. By the above, the equidistant tree
returned by LASSO is (T,!).
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