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A class of new explicit second order accurate finite difference schemes for the computation 
of weak solutions of hyperbolic conservation laws is presented. These highly nonlinear 
schemes are obtained by applying a nonoscillatory first order accurate scheme to an 
appropriately modified flux function. The so-derived second order accurate schemes achieve 
high resolution while preserving the robustness of the original nonoscillatory first order 
accurate scheme. Numerical experiments are presented to demonstrate the performance of 
these new schemes. 

1. INTRODUCTION 

In this paper we consider numerical approximations to weak solutions of the initial 
value problem (IVP) for hyperbolic systems of conservation laws 

u, + f(u), = 0, U(& 0) = 4(x), -co<x<co. (1.1) 

Here u(x, t) is a column vector of m unknowns, and f(u), the flux, is a vector-valued 
function of m components. Equation (1.1) is called hyperbolic if all eigenvalues 
a’(u),..., a”(u) of the Jacobian matrix A(u) 

A(u) =A4 (1.2a) 

are real and the set of right eigenvectors R l(u),..., R”(u) is complete. We assume that 
the eigenvalues (a’(u)} are arranged in a nondecreasing order 

a’(u) < a”(u) < *. - Q urn(u). (1.2b) 

We consider systems of conservation laws (1.1) that possess an entropy function 
U(U), defined as follows: 
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(i) U is a convex function of u, i.e., U,, > 0, 
(ii) U satisfies 

U,, fu = F, 9 (1.3a) 

where F is some other function called entropy flux. 
Admissible weak solutions of (1.1) satisfy, in the weak sense, the inequality 

u(u), + f’(u), < 0 (1.3b) 

(see [ 12)). The inequality (1.3b) is called an entropy condition. 
We shall discuss numerical approximations to weak solutions of (1.1) which are 

obtained by (2k + 1)-point explicit schemes in conservation form 

v;+’ = vi” - u;+ L/2 -I;- l/2), (1.4a) 

where 

.T;+ *,2 = J(<v;- k + 1 v***, vi”, k). (1.4b) 

Here vi” = v(j Ax, n At), and 7 is a numerical flux function. We require the numerical 
flux function to be consistent with the flux f(u) in the following sense: 

.&b..., u) = f(u)- (1.4c) 

We say that difference scheme (1.4) is consistent with entropy condition (1.3b) if an 
inequality of the following kind is satisfied: 

u; + ’ < vi” - n<F;+ ,,2 - F;- ,,2), (1.5a) 

where Uy = U(v;), Fy+ ,,2 = F(v(ujnpk+ i,..., vy+,J; here F is a numerical entropy flux 
consistent with the entropy flux F(u), i.e., 

F(U,..., u) = F(u). (1.5b) 

We turn now to discuss the question of convergence of the finite-difference solution 
of (1.4) to weak solutions of conservation laws (1.1). Since the finite-difference 
scheme is nonlinear and the computed solutions are certainly not smooth, L,-stability 
of a consistent finite-difference scheme does not imply convergence. One can establish 
convergence of finite-difference solutions of (1.4) to weak solutions of (1.1) when the 
following conditions are satisfied: 

(i) The total variation with respect to x of the finite-difference solutions is 
uniformly bounded with respect to t, At, and Ax. 

(ii) Finite-difference scheme (1.4) is consistent with entropy condition (1.3b) 
for all entropy functions of (1.1). 

(iii) Entropy condition (1.3b) implies uniqueness of the solution of the IVP 
(1.1). 
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Using compactness arguments one can deduce from condition (i) the existence of 
convergent subsequences. Conservation form (1.4) and condition (ii) imply that each 
limit solution is a weak solution which satisfies entropy condition (1.3b). When the 
entropy condition implies uniqueness of the IVP (condition (iii)), then all subse- 
quences have the same limit solution, and consequently the finite-difference scheme is 
convergent. (See [2,9, IO].) 

It seems possible to satisfy conditions (i) and (ii) by adding a hefty amount of 
artificial viscosity to finite-difference scheme (1.4). The additional viscosity terms 
damp possible oscillations in the computed solution and make the convergence 
process simulate the zero-dissipation limit which is used to select the unique 
physically relevant weak solution. Unfortunately, viscosity represents an irretrievable 
loss of information and therefore the addition of artificial viscosity brings about some 
deterioration in resolution. 

In this paper we describe a new method to design finite-difference schemes that 
satisfy conditions (i) and (ii), but are second order accurate and have high resolution. 

2. MONOTONICITY IN THE SCALAR CASE 

In this section we consider the IVP for a scalar conservation law. 

u, + f(u), = u, + a(u)u, = 0, a(u) = df/du, (2.la) 

u(x, 0) = d(x), --oo<x<cQ, (2. lb) 

where g(x) is assumed to be of bounded total variation. A weak solution of scalar 
IVP (2.1) has the following monotonicity property as a function of t: 

(i) No new local extrema in x may be created. 
(ii) The value of a local minimum is nondecreasing, the value of a local 

maximum is nonincreasing. 

It follows from this monotonicity property that the total variation is x, denoted 
TV(u(t)), of u(x, t), is nonincreasing in t, i.e., 

TV(&)) G TVW,)) for all tz > t, . (2.2) 

We consider now explicit (2k + 1)-point finite-difference schemes in conservation 
form ( I .4) approximating (2.1) 

t’r!+‘=H(qk, qk+* )..., v;+k) J 

= VJ -n[f(vyek+ ,,..., q+/J -f& ,...) ui”+k-,)]. (2.3a) 

and denote (2.3a) in an operator form as 

V n+1 EL . 0”. (2.3b) 
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We say that finite-difference scheme (2.3) is total variation nonincreasing (TVNI) 
if for all v of bounded total variation 

TV(L . v) < TV(v), (2.4a) 

(2.4b) 

Here, and throughout this paper, we use the standard notation 

Aj+1/2u=uj+I-u/* (2.5) 

We say that finite-difference scheme (2.3) is monotonicity preserving if the finite 
difference operator L is monotonicity preserving; i.e., if v is a monotone mesh 
function, so is L . v. 

We say that finite difference scheme (2.3) is a monotone scheme if H in (2.3a) is a 
monotone nondecreasing function of each of its 2k + 1 arguments. 

The following theorem states the hierarchy of these properties: 

THEOREM 2.1. (i) A monotone scheme is TVNI. 
(ii) A TVNI scheme is monotonicity preserving. 

Proof. (i) It was proven in [8] that monotone schemes form an l,-contractive 
semigroup, i.e., 

IIL * v -L * Zlll, G IIV -4, (2.6a) 

for all I,-summable v and z; here ]]u]],, = CF=-, ]u,]. Equation (2.4) follows 
immediately from applying (2.6a) to v and z = T * v, (i.e., zj = vj+, for all j). 

(ii) Let (2.3) be a TVNI scheme, let v be a monotone mesh function of bounded 
total variation, and denote w = L . v. Since L has a finite support of 2k + 1 points it 
is sufficient to prove that w is monotone for all v of the form 

v=const=v,, if j<J-, 

= monotone, if J-<j<J+, J+>J-, 

= const = vR, if j>J+, 

TV(v)=Iv,-v,]. (2.6b) 

We prove (ii) by negation. Suppose w is not monotone; then it has at least one 
local minimum and one local minimum. Denote by v, and vM the values of the first 
two successive local extrema, then 

TV(w) > (v, -v,] + (v, - vM] > TV(v), 
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which contradicts the assumption that the scheme is TVNI. This completes the proof 
of Theorem 2.1. 

Monotone schemes approximate solutions of the viscous modified equation 

(2.7a) 

I’H,(u, u ,..., u) - A2a2(u) ; 
I 

PO4 A) 2 0, P(& A> $0 (2.7~) 

to second-order accuracy; since p(u, A) f 0, monotone schemes are necessarily first 
order accurate; H, in (2.7b) denotes @H/~w,)(w-,, wmk+ 1,..., wk). (See [8].) 

Since monotone schemes are TVNI, there exist convergent subsequences for all 
initial data of bounded total variation. Each limit is a weak solution of (2.1) that 
satisfies Oleinik’s entropy condition [8]. Since Oleinik’s entropy condition implies 
uniqueness of IVP (2.1), we conclude that all subsequences converge to the same 
limit, and therefore the scheme is convergent [2]. 

Let us consider now the scalar constant coefficient case a(u) = const in (2.1). A 
linear finite-difference approximation 

(2.8a) 

is monotonicity preserving if and only if 

c/ 2 0, -k<l<k. (2.8b) 

See [4]. Hence any linear monotonicity-preserving scheme, and therefore any TVNI 
linear scheme, is a monotone scheme and consequently first order accurate. 

We remark that the previous statement does not exclude the possibility of having 
nonlinear monotonicity-preserving and TVNI schemes that are second order accurate 
(and consequently are not monotone schemes). In fact the schemes presented in 
[6, 171 are monotonicity preserving (at least in the constant coefficient case) and 
second order accurate. 

It is the purpose of this paper to present new high-resolution second order accurate 
TVNI schemes. These new schemes are generated by converting known 3-point first 
order accurate TVNI schemes into new 5-point second order accurate TVNI schemes. 
Both the 3-point schemes and the new 5-point schemes can be rewritten in the form 

v”+’ EL . v”, (2.9a) 

(L * VI/= V/ + C+,j+l/zA,+1/2V - C-./-1/2A/-1,2~9 (2.9b) 

where Aj+ ,,2 is defined in (2.5) and 

c+,j+L/2 = c+(vj-l* vjv v/+1, vj+2h c--,,--1,2=c-(v,-2,v/4,vj,v,+1). (2.9c) 
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The following Lemma states conditions on coefficients (2.9c) which are sufficient 
to ensure that scheme (2.9b) is TVNI. 

LEMMA 2.2. Let the coeflcients C, in (2.9c) satisfy the inequalities 

c-,j+1/*20, c+,j+l/2ho~ (2.10a) 

'-.j+l/Z + c+.j+l/2 G ‘; (2. lob) 

then scheme (2.9) is TVNI. 

ProoJ: Denote w = L . u and subtract (2.9b) at j = i from (2.9b) at j = i + 1 to 
obtain 

Ai+ 112 w=c -,I-l,2Ai-L/2V+(1-CC_,i+,/2-C+.i+l/2)Ai+l/2V 

+ c+,i+3/2Ai+3/2v* (2.11) 

By (2.10) all the coefficients in (2.11) are nonnegative; therefore 

IAi+l/2 ~?l< (1 -C-,i+,/2-C+i+1,2)lAi+~/2vI +C-,~-~/~IA~-WUI 

+ C+,i+,,2 lAi+3/24* (2.12) 

Summing (2.12) for -co < i < co we obtain 

TV(w) = f IAi+l/2WI < f (‘-C-,~+~/~-C+,~+~/~)IA~+~/Z~I i= -a, i= -a 

+ f! C-.-L/2 IAi-l/2VI + f C+,i+3/2 IA,+,/201 
i=-CC i=-a, 

= g lAi+,,,vl =TV(v), 
i=-m 

which shows that (2.4) is satisfied. The equality is obtained by changing the 
summation index in the last two sums in the RHS of the inequality. 

We remark that any 3-point finite difference scheme in conservation form with a 
differentiable numerical flux can be rewritten as (2.9) in the following way: It follows 
from the mean value theorem that there exist C, and C- such that 

nV(vj* vj+ 1 )-f(~jv uj>I =-C+(V~,V,+~)A~+*/~V, (2.13a) 

~[f(Vj-,,Vj)-J;(Vj,Vj)]=-C-(Uj-~,Uj)Aj-~/2U. (2.13b) 

Expressing the numerical flux values in (2.3a) with K = 1 by (2.13) results in form 
(2.9). 

In the next section we shall use Lemma 2.2 to design second order accurate TVNI 
schemes in the following way: We start with a 3-point first order accurate TVNI 
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scheme which can be written in form (2.9) that satisfies the assumptions of 
Lemma 2.2. This scheme approximates solutions of modified equation (2.7a) 

to second order accuracy. 

Ut + (f- W)gL= 0, (2.14a) 

g = AxP(u, J)u, (2.14b) 

Consider now the application of the original first order scheme to the equation 

u, + df + (l/A)g)x = 0. (2.15) 

This in turn is a new scheme that is a second order approximation to its own 
modified equation. Since g = 0(4x), this modified equation satisfies 

u, + f, = o((Axy). (2.16) 

Thus applying the original first order scheme to the flux f + (l/A) g results in a 
second order accurate approximation to the original equation I(, + f, = 0. 

To apply the scheme to the flux f + (l/A)g we have to be able to consider g as a 
differentiable function of U. To do so we smooth the point values of g in (2.14b) by 
the recipe devised in [5,6]. This smoothing process enlarges the support of the 
scheme to five points. 

The resulting scheme is TVNI due to the fact thatfir anyflux function the original 
scheme has the form (2.9) that satisfies (2.10) under an appropriate CFL-like 
restriction. 

3. SECOND ORDER ACCURATE TVNI SCHEMES 

Let us consider a general 3-point finite-difference scheme in conservation form 
(1.4) with a numerical flux 7 of the form 

f(vj, uj+~)=Q[f(vi) +f(ui+,)- (lln>Q(~~j+,,,)dj+1/*vI, (3.la) 

where 

cj+ 1/2 = If~“j+~~~f~~j~l/dj+1/2v~ when Aj+,/,V#Ov 
(3.lb) 

= a(vj)9 when Aj+ ,,z Y = 0. 

Here Q(x) is some function, which is often referred to as the coefficient of numerical 
viscosity. 

LEMMA 3.1. Let Q(x) in (3.la) satisfy the inequalities 

IxI<Qe<x>< 1 for O<lxl<~< 1; (3.2) 
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then jlnite-d@erence scheme (1.4) with (3.1) is TVNI under the CFL-like restriction 

Proof: Using the notation 

V;+ L/2 = nGj+ I/2’ 

where aj+ ,,2 is (3.lb), we rewrite (3.la) as 

fix+ l/2 = Vf(vjv vj+,)=aff(Vj)-f[-V;.+,/2 + Q(fj+,/2)IAj+1/2~ 
and similarly 

A&-,,2 = Af(v.- 1 ,,Vj)=aff(Vj)-i[~j-,/2+Q(~-,/2)]A/-,/2~. 

Substituting (3.4) for numerical flux values in (1.4) we get form (2.9) 

,;+’ = vi” -a(.$+ I/Z -J;-,,z)=uJ’ + fiQ(ijj+,,A- V;+1/2] A,+1/2~” 

- fiQ(Y;-1/2) + $1/2] A/-,/Yzv* 
q+c +,1+1/z ,+1/2V” A -C-.j-l/2Aj-1/2Vn, 

where 

c* .j+ l/2 = i[QFj+ ,,A F v;+ ,,d 
Since 

c+.j+1/2 + c-./+1,2 = Q(V;+ ,,A 

(3.3) 

(3.4a) 

(3.4b) 

(3.4c) 

(3.5a) 

(3.5b) 

(3.5c) 

it follows from (3.2) and (3.5) that conditions (2.10) of Lemma 2.2 are satisfied 
under CFL restriction (3.3) and therefore finite-difference scheme (3.1) is TVNI. 

The second order accurate Lax-Wendorff scheme has numerical flux (3.1) with 
Q(x) =x2, i.e., 

Ti’+“2 E f [ft"j) +ft”j+ 1) - (llnKFj+ l/2J2 Aj+1/2vl* (3.6a) 

Clearly a numerical flux of a second order accurate scheme A+ 1,2 has to satisfy 

A+ ,/2 -f&l,, = f-W 2), (3.6b) 

for all smooth solutions of (1.1); here A is the discretization parameter. When Q(x) is 
constrained by (3.2), then the 3-point scheme (3.1) is only first order accurate, for 

j;i+ l/2 = j;lL+wI,2 - (l/W))[-(‘,+ 1/2)’ + Q(V;+ 1,211 Aj+ i/20” (3.7) 
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and therefore 

If j-T,,2 -~+1,2l~(~/(23*))~l~+,,*1-(V;+*,2)2l~l~j+1,2~nI=~(~). 

We describe now how to convert a 3-point first order accurate TVNI scheme to a 
5point second order accurate TVNI scheme. Consider the application of a 3-point 
first order accurate TVNI scheme (3.1) to modified mesh values Jr of the original 
flux f(u): 

f~=f(vi> + (1/A)gi9 gl=dvi-l, ui9 ul+I), 

-M 
‘i+ l/Z =Fi+l/* +Yi+1/2, Yi+1/2= (gi+l - kfiYdi+1/2v* 

The modified numerical flux fy+ ,,2 = T”(vj-, , vi, vi+ , , vi+ 2) is 

j;i”,1/2=f[fj”+fi”,l-(l/n)Q(v~,,,)dj+,,2~1 

(3.8a) 

(3.8b) 

(3.8~) 

or 

J;i”+ I/2 = f Lf(Vj) + f(vj+ ,)I + (1/(21))[ gj + gj+ 1 - Q(V;+ 112 + ~j+ 112) dj+ 1,2~]- (3-8d) 

LEMMA 3.2. Suppose Q(x) is Lipschitz continuous and g, satis.es 

Sj+ gj+l= [QPj+ ,,A - 03, 1,2J21 A,, 1/2v + W2), (3.9a) 

Yj+ l/2 * A,+ l/2 v = sj+ 1 - gj = O(A2); (3.9b) 

then the numericaljlux of (3.8) satisfies (3.6). 

ProoJ: The modified numerical flux $/“+ ,,2 of (3.8~) differs from the original flux 
j;i+ L/2 of (3.1) in the following way: 

7: I/2 = Ji+ L/2 + (1/(2~)){ gj + gj+ 1 + [Q<5+ l/2) - Q<5+ 112 + Y/+ 1~~11 Aj+ 1/2vk* 
(3.10a) 

Substituting (3.7) for A+ ,,2 in (3.10a) we get that (3.6) holds if the relation 

(gj + Sj+ 1) + lQ<5+ 1/d - Q(5+ 112 + Yj+ 1,211 A/+1/2~ 
= [Q<5+ I/Z) - (vi+ ~1~1 Aj+ ,/2V + O(A2) (3. lob) 

is satisfied. 
Since Q(x) is Lipschitz continuous 

I Q<5+ 1,12)- Q(q+ 112 + Yj+ 1,2)l Q const I Yj+ 112 1; (3.1Oc) 

therefore it follows from (3.9b) that the second term on the LHS of (3.10b) is itself 
O(A2); consequently, (3.9a) implies (3.10b). This completes the proof of Lemma 3.2. 

We construct gi = g(v,-,, vi, vi+,) that satisfies (3.9) in the following way: 
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gi = si+ 112 max[@ min(l ii+ 1,217 Si- l/2 . si+ &I 
~Si+l/2min~l~i+l,21~l~~-~~21~~ when ki+ 112 * gi- l/2 / > 0, 

= 0, when gi+ 112 . ii- 112 < 0, (3.1 la) 

where 

ffi+ l/2 = f [Q(vi+lp) - (F1+1/2J21 di+I/zL', 

si+ 112 = %n(Fi+ i/z)* 

(3.1 lb) 

(3.1 lc) 

LEMMA 3.3. Let gi be defined by (3.11); then relations (3.9a) and (3.9b) are 
satisfied, and 

I~j+l/2l= I gj+ I- gjl/ldj+ 1/2uI G fl Q(vj+,,2) - (V;.+1/2J21* (3.12) 

Proof: First let us assume that g. ,+ 1,2 gji- 1,2 > 0; then using definition (3.1 la) and 
the relation min(a, 6) = f [ (a + b) - I a - b I] we get 

~j=~[~j-1/2+~j+l/2-sj+l/21~j+l~2-~j-l~211 

= Zj* l/2 + +[+(gi+ l/2 - ij-l/2) - sj+ I/2 I k?j+*/2 - fj-1,211. (3.13a) 

From (3.1 lb) we conclude that if v is smooth and Q(x) at least Lipschitz 
continuous, then 

gj+ l/2 - Zj- 1/2 = O@ ‘>* (3.13b) 

Thus (3.13a) and (3.13b) imply that 

gj = ij* l/2 + o(d2)* (3.13c) 

It is easy to see that (3.13~) holds even if &jl,2~,+l,2 GO, for then gj= 0 but 
ij* l/2 = O(d’) itself (since Aj, ,,2 u = O(A2)). 

Relations (3.9a) and (3.9b) follow immediately by rewriting (3.13~) as 

gj = ij+ 1/2 + O(A2h gj+ 1 = gj+ L/2 + O(A’). 

We turn now to prove (3.12). We observe from definition (3.11a) that gj and gj+, 
cannot be of different sign, hence 

I Sj+ I - Sjl G ma4 gjl, I gj+ II) 

< max[min(l&-11219 1~~+1~21~~~~~~1~~+1~21~ lgi+3121)1 

G I ij+ l/2 I* 
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Thus it follows from (3.1 lb) that 

b/+1/* I~I~j+1~~jl/ldj+*/*uI~l~j+1/2111dj+I/*ul 

G flQ(?+,,~l - Fj+,,d*l; 
this completes the proof of (3.12). 

We show now that the 5point second order accurate scheme (3.8) with (3.11) is 
TVNI under the same CFL restriction of the original 3-point first order accurate 
TVNI scheme (3.1). L3 i 

LEMMA 3.4. Suppose Q(x) satisfies (3.2) and gj is defined by (3.11); then finite- 
difSerence scheme (1.4) with numerical jlux (3.8) is TVNI under CFL restriction 
(3.3). 

ProoJ Since (3.8) is (3.1) applied to a modified flux fy (3.8a), it can also be 
rewritten as (3.5) with a modified CFL number vy+,,, (3.8b). Since Lemma 2.2 is 
valid also for 5 point schemes of form (2.9), we conclude from Lemma 3.1 that 
scheme (3.8) is TVNI under the modified CFL restriction 

(3.14) 

To complete the proof of Lemma 3.4 we show that (3.14) is implied by the original 
CFL condition (3.3). Using (3.12) and (3.2) we get 

l$Y1/2I=l~+1/2+Yj+1/21~I~+1/21+IYj+l/21 

G I?+ 1,2 I + fl Q@i+ 1,2) - Wj+,,2)* I 

G I5+,,21 + fP - vj+I,2)21 

= 1 -;(lirj+,,21- 1)2< 1 

whenever 15, ,,*I < Q(y;.+,,*) < 1; thus the original CFL restriction (3.3) guarantees 
that inequalities (2.10) of Lemma 2.1 are satisfied and therefore the scheme is TVNI. 

Remark 1. If Aj+ 1,2 u = 0, then it follows immediately from definition (3.11) that 
gj=gj+l- - 0. This shows that the modified numerical flux (3.8~) is consistent with 
the physical flux f(u) in the sense of (1.4~). Scheme (3.8) + (3.11) is TVNI and 
therefore it has convergent subsequences for all initial data of bounded total 
variation; the limits of these subqsequences are weak solutions of scalar conservation 
law (2.1). To complete the convergence proof one has to show that all these limits are 
the same. In the constant coefftcient case the solution to IVP (2.1) is unique and 
therefore the scheme is convergent (note that the scheme is nonlinear even in the 
constant coefftcient case!). In the nonlinear case, convergence will follow if one 
shows that the scheme is consistent with Oleinik’s entropy condition in the sense of 
(1.5). We shall discuss consistency with the entropy condition in Section 5. 
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Remark 2. Condition (3.6) is only a necessary condition for second-order 
accuracy. It becomes a sufficient condition if the coefficient in the O(d*) term in 
(3.6) is differentiable, except possibly at a finite number of points N(t,dt), such that 
N At + 0 as At + 0 for all t. It is clear from (3.13) and (3.9) that the troublesome 
points where the scheme (3.8) + (3.11) may degenerate locally to O(A’) truncation 
error are those where si+ ,,* in (3.1 lc) is discontinuous, i.e., where Q(V) - Y’ = 0 or 
U, = 0. The fact that the scheme is TVNI controls the possible increase of the number 
of local extremum points in the computed solution. The schemes that we consider in 
Section 5 all have the monotonicity property (see Section 2), i.e., the number of local 
extremum points in the computed solution is nonincreasing in time, and thus bounded 
by that of the initial data. 

Remark 3. The modified equation of scheme (3.1), i.e., the equation which it 
approximates to second-order accuracy, is (2.6) with 

P(u, 1) = 4 [Q(v) - v* I, v = La(u). (3.15a) 

We rewrite the modified equation as 

u, + if- kW~‘)l[Q<v> - v*lG = 0, (3.15b) 

and observe that g,+ ,,* in (3.11b), and consequently gi in (3.11a), is an approx- 
imation to the term 

g z [At/(2J)][Q(v) - v’]u, = f[Q(v) - v*](Axu,). (3.15c) 

Our method to convert a first order accurate TVNI scheme into a second order 
accurate TVNI scheme is based on the following heuristic argument described in the 
end of Section 2: first order scheme (3.1) approximates 

u, + v - (l/A) gl, = 0 (3.16a) 

to second-order accuracy. Relation (3.7) shows that applying the same scheme to 

ut+ If+ (1/~)g1,=0 (3.16b) 

results in a second order accurate approximation to u, + f, = 0. To be able to apply 
the scheme to (3.16b) we have to define g(u) with a bounded derivative dg/du; 
therefore we use the particular form (3.11) rather than a direct discretization of 
(3.15c) (see [5]). L emma 3.3 shows that the so-defined g satisfies these requirements. 

Remark 4. We observe that if the term Q(v + y) in (3.8d) is replaced by 
Q(v) + ] y], then the resulting scheme remains second order accurate and TVNI under 
the same CFL restriction. The corresponding numerical flux takes the somewhat 
simpler form 

A... Jtl/2 = (J/z)V; +f/+l) - fQ(q+&Aj+l/2U + Gj-+1/2, (3.17a) 

Gj+ L/Z = S max[O, min(i,-,,,S, I ijt 1j219 ij+3/2s)lv (3.17b) 
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where, as before, 

Zj+ 1/2 = Ii [QV,, 1/A - (v;.+ ,,d*l A,+ l/209 S = wGj+ L,2). (3.17c) 

To derive this expression we use the definition of y,+,,* in (3.8b) and note that 

Gj+ 112 = f kj + gjt 1 - I Sj + gj+ 1 I w(A,+ L/z u)l = S min(g,S, gj+ , S). 

Form (3.17b) follows from the definition of g, in (3.1 la). Note the resemblance of 
(3.17b) with Q(x) =x2 + l/4 to the “anti-diffusion” term in [ 11. 

4. SYSTEMS OF CONSERVATION LAWS 

In this section we describe how to extend our new scalar scheme of Section 3 to 
systems of conservation laws. Our extension technique is a somewhat generalized 
version of the procedure suggested in [ 141. The basic idea is to extend the scalar 
scheme to the system case by applying it “scalarly” to each of the (appropriately 
linearized) characteristic variables. 

Let 
S(u) = (R’(u), R*(u),..., Rrn(U)) (4. la) 

be a matrix, the columns of which are the right eigenvectors of the Jacobian matrix 
A(u) in (1.2a). Then 

S-‘AS=A, /Iii = a’(u) 6,. (4.lb) 

The rows L’(u), L*(u),..., Lm(u) of S-‘(u) constitute a complete system of left eigen- 
vectors of A(u) which is bi-orthonormal to the system of right eigenvectors, i.e., 

L’R’ = 6,. (4. lc) 

In the constant coefficient case A(u) s A = const 

u,+Au,=O, u(x, 0) = #(x)3 -m<x<m. (4.2) 

One defines characteristic variables w = (w”) by 

Wk = LkU, w=s-‘u. (4.3) 

It follows from (4.1) that (4.2) decouples into m scalar characteristic equations, 
l<k<m 

w: + akw; = 0, Wk(X, 0) = Lqqx), -co<x<a3. (4.4) 

This offers a natural way of extending a scalar scheme to a constant coefficient 
system of equations (4.2) by applying it “scalarly” to each of the m scalar charac- 
teristic equations (4.4). 
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The characteristic variables & in (4.3) can also be viewed as the components of u 
in the coordinate system {Rk}, i.e., 

u= ;: wkRk. 
k?=I 

V-5) 

We use this interpretation of characteristic variables to extend the scalar scheme to 
general nonlinear systems of conservation laws. 

Let uj+ ,,* = V(vj, vi+ ,) be an average of vi and vj+,, i.e., a smooth function 
V(u, v) such that 

q’(u, v) = qv, u), (4.6a) 

qu, 24) = u; (4.6b) 

and let a$+ ,,z denote the component of Aj+ ,,rv = uj+ r - vi in the coordinate system 
lRk(vj+ dl 

m 
Aj+ II2 

u= K- a? 

k:l 
,+ v2Rjk+ l/23 (4.7a) 

a:+ 112 = L,k+ lpAj+ 112~. (4.7b) 

Here we use the notation convention bj+ ,,2 = b(u,+ ,,2) = b( V(v,, vi+ ,)). 
We now extend the scalar scheme (3.8) + (3.11) to general systems of conservation 

laws as follows: 

vj” + ’ = ?I; - n(fi”+ ,,I - J;;- 1,2), (4.8a) 

A+ l/2 = i V(vj) + fCvj+ 111 

+ & 2 R;, 1/z [g; + gj”, 1 - Q”<$+ l/2 + I$+ 1,2) a:+ 1,21v (4.8b) 
k-l 

where I$+ ,,2 = Aak(vj+ &I and 

d = $+ L,2 maxD mintI 8, 1,2l9 Sf- Li2sf+ 1,2)1, 8, L,2 = w(8, 1j2)v (4.8~) 

8,1/Z = f IQ”@!+ ,,2) - Of+ dl a:+ 1/2y (4.8d) 

S+ I/2 = Cd+ 1 - sWf+ l/29 when a:+ ,,2 # 0, 
= 0, when a:+ ,,2 = 0. 

(4.8e) 

The second order accurate one-step Lax-Wendroff scheme can be represented as 

.TjL+w1,2 = f Lf(Vj) + f(vj+ 111 - & 2 <$+ 1,d2 a;+ ,,Pj+ ,,* 
k-l 

(4.9) 
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LEMMA 4.1. Suppose {Qk(x)} are Lipschitz continuous; then (4.8) satisfies 

j;/+ l/2 = f&2 + w ‘)* 

ProoJ Rewrite (4.8b) as 

where 

21r;, l/2 = gj + g:+, - [Q"<$+ ,,2) - <$+ 1,2)*1 a;+ 1/2 

- [Q"<$+ 1/z + ri”+ 1,2) - Q"($+ 1,2)1 a:+ ~2, 

and then use (3.10~) and conclude (3.9) from Lemma 3.3. 

We define the total variation TV(u) of the vector mesh function u to be 

TV(b)= T -? I4+t,21, 
j=-a0 k2l 

where ai”+ ,,2 is defined by (4.7), and show 

(4.10) 

(4.1 la) 

(4.1 lb) 

(4.12) 

LEMMA 4.2. Suppose Q”(x) satisfies (3.2) for all k, and that A(u) = A = const. 
Then scheme (4.8) is TVNI under the CFL restriction 

lmax(ak]<~=min~k< 1, 

where ,uk are the restrictions in (3.2). 

(4.13) 

ProoJ: Because of the assumption A(u)= const, {Rk}, (Lk}, and {a”) are all 
constant. Multiplying (4.8b) from the left by Lk, we obtain (3.8d) for the charac- 
teristic variable wk in (4.3); gj and Y;+,,~ in (4.8) become identical with (3.11). Thus 
by Lemma 3.4 we conclude that under condition (4.3) the total variation of each of 
the characteristic variables is nonincreasing, and therefore the total variation (4.12) is 
nonincreasing as well. 

COROLLARY 4.3. Scheme (4.8) in the constant coefjlcient case is convergent 
under restriction (4.13) for all initial data of bounded total variation, and is second 
order accurate. 

We remark that this corollary is not trivial since the scheme is highly nonlinear 
even in the constant coefficient case. 

Our technique to extend scalar schemes to the system case does not require any 
particular form of aevraging I+, v) (4.6). Roe in [ 151 uses a specific form of 
averaging that on top of being mathematically pleasing, also enables the 
computational advantage of perfectly resolving stationary discontinuities. 

581/49/3-2 
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In [7] we show that if the system of conservation laws (1.1) possesses an entropy 
function (1.3), then it is symmetrizable, and there exists a mean value Jacobian 
A@, u) such that 

f(u) -f(u) = A@, u)(v - u), (4.14a) 

A(u, u) = A(u), (4.14b) 

A(u, v) has real eigenvalues {a$, u)}r=, and a complete set of right 
eigenvectors {Rk(U, u)}[lf,,. 

In the context of scheme (4.8), Roe’s extension technique is expressed by taking 
a;+ Ll2 and R?+ Il2 in (4.7) and (4.8) to be the eigenvalues and the right eigenvectors of 
the mean value Jacobian A(vj, Vi+,) (4.14a), respectively. Thus if the a;+ ,,2 are 
defined by (4.7a) 

then it follows from (4.14a) that 

(4.15a) 

(4.15b) 

Relation (4.15) makes scheme (4.8) a more faithful extension of (3.8) in the sense 
that (4.8) for m = 1 is identical with scalar scheme (3.8). 

In the case of the Euler equations of gadynamics, where the flux f(u) is 
homogeneous function of u of degree 1, it is possible to express A(u, 0) in (4.14) as 

A(u, u) =A(V(u, u)). (4.16) 

This relatively simple function V(u, v) (see [ 151) will be described in Section 6. 

Remark 1. Note that we use Qk(x), thus allowing different functions (3.2) for 
different characteristic fields. As observed by Roe [ 141, the extension technique of 
this section permits even the use of completely different scalar schemes for different 
characteristic fields. 

Remark 2. Version (3.17) extends to systems in a similar way: 

4+,/2=9 Uj+fi+,>+ ’ [Gjk+L/2-fQ(ylk+~/2)ajk+1/*IR:+1/2, 
k:l 

(4.17a) 

G;+ 112 = S max[O, min($+ L,2 S, I if+ 1,2 Iv $+ 1I2 WI, (4.17b) 

where 

if+ I/Z = iiQ@,“+ ,,J - @;+ ,,2121 a:+ I/Z, S = w(k$+ L,2). (4.17c) 
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Remark 3. The particular definition (4.12) of total variation is motivated by the 
definition of Glimm’s functional in [3]. When applied to a piecewise smooth solution 
24(x, t) of (1.1) 

:!$I~ TV(u) = Im 5 (Lk(u)u,Idx+ T ;: lak(xj)l, U;-l 
--oo k=l j k=l 

where xi are points of discontinuity, and ak(x,) denotes the value of a:+,,, in (4.7) 
evaluated with respect to U, = u((xj)- , t), u,+, = u((xj)+ , t). 

There is no reason to expect that functional (4.18), and consequently (4.12), is 
generally nonincreasing with t. Based on Glimm’s results [3] we do, however, believe 
that this functional (under certain conditions) is bounded in C. At this time we do not 
have estimates of the possible increase in total variation in solutions of scheme (4.8), 
and therefore cannot prove convergence in the nonlinear system case. 

5. ON ENTROPY,RESOLUTION, AND Q(x) 

The proposed scheme of this paper is in conservation form. Hence, if the scheme is 
convergent, then its limit is a weak solution of (l.l), i.e., it satisfies the differential 
equation pointwise wherever it is smooth, and at points of discontinuity it satisfies the 
Rankine-Hugoniot jump relations. It is well known that the fact that a scheme is in 
conservation form does not by itself guarantee that all the discontinuities in its limit 
solution are physically relevanet, i.e., they do not necessarily satisfy the entropy jump 
inequality associated with (1.3) (see [8]). 

In practice, however, we are not concerned with the limit of an infinite sequence of 
computations, but rather with a single computation on a relatively crude mesh. Thus, 
to have a viable numerical method it is not sufficient to ensure that discontinuities in 
its limit solution are admissible. We have to insist upon having a good approximation 
to the exact solution on a finite mesh. 

To formulate such criteria let us consider the Riemann IVP for (1.1): 

4x9 0) = v(x) = UL, if x < 0, 
(5.1) 

=UR, if x > 0, 

where uL and ua satisfy the RankineHugoniot relations with some speed of 
propagation s. 

If u(x, t) = ~(x - st) satisfies the entropy inequality, then we require that the 
numerical scheme possess a steady progressing profile with a narrow transition from 
24, to z+ (see [5]); we refer to this property as resolution. 

If, on the other hand, the solution U(X, t) = ~(x - st) is inadmissible, then the 
physical solution is a fan of waves (i.e., a function of x/t) which consists of a large 
rarefaction wave in the same field as the initial discontinuity, and possibly weaker 
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waves in the other fields. Since the breakup of the initial discontinuity in the exact 
solution occurs spontaneously, we require that the numerical scheme also break it up 
and at a fast rate; we refer to this property as entropy enforcement. (To demonstrate 
the need for this requirement, we would like to point out that the Godunov scheme, 
which is so attractive because of it being “physical,” actually exhibits a surprisingly 
poor entropy enforcement, see [ 11 I.) 

We consider here systems of conservation laws where the characteristic fields are 
either genuinely nonlinear (a$& # 0) or linearly degenerate (a:Rk E 0, see [ 121). 
The waves of a genuinely nonlinear field are either shocks or rarefaction waves, 
depending whether the characteristics are convergent or divergent. The waves of a 
linearly degenerate field are exclusively contact discontinuities. 

The extension technique of Section 4 consists of applying scalar schemes, not 
necessarily the same, to each of the characteristic fields. Therefore, it makes sense to 
approach the questions of entropy enforcement and resolution for the system by 
examining the corresponding ones for the scalar scheme in each of the fields 
separately. We note that with this extension technique we have the possibility to 
custom fit the scheme to the special computational needs of each of the different 
characteristic fields. First let us consider the 3-point first order accurate scheme 
(3.1). The effective numerical viscosity coefficient (2.7a) of this scheme is 

P(u, 1) = 4 [Q(v) - ~‘1, v=la. (5.2) 

Hence a natural choice of Q(X) under restriction (3.2) is Q(X) = Ix], as it gives the 
least dissipative TVNI scheme of form (3.1). This scheme with Q(x) = Ix] can be 
rewritten in form (3.5) as 

uin+’ = 4 - (v;+,,*)- d/+&J” - (V;-,,*)f d ,-,, *I)“, (5.3a) 

where 

V- = min(v, 0) = )(v - ] VI), v + = max(v, 0) = i(v + ) vi). (5.3) 

Scheme (5.3) is a generalization of the well-known upstream differencing scheme of 
Courant, Isaacson, and Rees, and it is well investigated in the literature (see [5, lo]). 

Consider now the application of this scheme to Riemann problem (5.1), where uL 
and uR satisfy the Rankine-Hugoniot relations with a zero speed of propagation, i.e., 
f (uL) = f (ua). It is easy to see that the initial discontinuity is a stationary solution of 
(5.3), regardless of whether or not it satisfies the entropy condition. (The same is true 
for its system extension with Roe’s linearization; see [ 10, 151). It is clear, therefore, 
that this scheme admits nonphysical solutions. We note, however, that this statement 
applies only to discontinuities in a genuinely nonlinear field, since there are no 
entropy considerations in a linearly degenerate one. 

This type of entropy violation in scheme (5.3) is related to the fact that numerical 
viscosity (5.2) vanishes for v = 0. Therefore it seems possible to eliminate this sort of 
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entropy violation by simply modifying Q(X) = 1x1 near x = 0 to be positive. To make 
Q(x) smoother at the same time we define for 0 < E < f 

Q(x) = (x2/(4&)) + E, for 1x1 < is, 

= 1x1, for 1x12 2e, 
(5.4) 

with, say, E = 0.1 (see Fig. 1). 
This change increases the amount of numerical viscosity for (xl < 2~ so that now 

p(u, A) > 0 for I v 1 < 1. Then p(u, A) vanishes only for v = 1, which can be handled by 
taking ,u < 1, say, ,U = 0.95, in CFL restriction (3.3). 

We turn now to a discussion of the entropy enforcement and resolution of the 
proposed second order accurate TVNI scheme of this paper. Being unable to 
rigorously analyze these properties, we have conducted a series of numerical 
experiments on Kiemann problem (5.1) for the Euler equations of gasdynamics, part 
of which is presented in Section 7. In these experiments we have used scheme (4.8) 
with Qk(x) defined by (5.4) for all k, with E = 0.05, 0.1, and 0.25; we have also 
experimenated with E = 0 ‘for the linearly degenerate characteristic field. In all our 
experiments the scheme has demonstrated high resolution of shocks and strong 
entropy enforcement. Contact discontinuities, although much better resolved than 
those of the corresponding first order accurate scheme, were rather smeared. 

As is to be expected, a larger E brings about improvement in entropy enforcement 
at the expense of some deterioration in resoltion. The dependence on E is rather slight, 
however, and the performance of the scheme for E = 0.05 is about the same as for 
E = 0.25. We have selected E = 0.1 for genuinely nonlinear fields, and E = 0 for 
linearly degenerate fields as our parameters for future computations. 

Next we present a heuristic analysis which may explain our numerical results and 
give some guidance for possible improvements. We observe that when applied to a 

FIGURE 1 
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jump discontinuity of form (5.1), g, in (4.8) is identically zero. Hence the opening 
move in this entropy versus resolution game is up to the “viscous” 3-point first order 
accurate scheme. To understand the development of the numerical solution at later 
stages, we examine the operation of scalar scheme (3.8) with (3.11) on data of the 
form 

= u(x), if xL<x<xR, (5.5) 

=uu, if xRQx 

for some xL < xa, where U(X) is some smooth monotone transition from uL to uR. To 
simplify things further, let us assume that f(u) is convex, so that the asymptotic 
solution to the initial data (5.5) is either a shock or a centered rarefaction wave. 

When operating with a monotonicity-preserving scheme on data of form (5.5), we 
obtain functions in the same class, i.e., monotone transitions from uL to uR. Hence 
we can identify the speed at which each value of u (excluding u, and u,J propagates 
due to the operation of the finite difference scheme, and thus introduce the notion of a 
numerical characteristic speed. 

Our heuristic analysis relies on the representation of the second order accurate 
scheme as the original first order accurate TVNI scheme operating on a modified 
flux. 

Let us denote the numerical characteristic speed of the first order accurate scheme 
by Cr, and measure its deviation from the exact characteristic speed by 

6=a + (l/A)& 6 = O(A); (5.6a) 

that 6 = O(A) follows from the first order accuracy of the scheme. Similarly, let us 
denote the numerical characteristic speed of our second order accurate scheme by a’, 
thus 

6= a + O(A2). (5.6b) 

On the other hand, this second order accurate scheme is obtained by applying the 
original first order scheme to the modified characteristic field a + (l/A)y, where y is 
defined by (3.8b) and y = O(A) by (3.9b). Therefore, it follows from (5.6a) that 

d = (a + (l/A)y) + (l/A)s + O(A2). 

Comparing (5.6~) with (5.6b), we conclude that 

(5.6~) 

y = -6 + O(A’). (5.6d) 

The observed excessive smearing of the first order accurate scheme indicates that 
d<a near uL and b>a near u,,. Hence, it follows from (5.6a) that 6 < 0 near u, 
and 6 > 0 near uR, i.e., the 6 characteristic field is divergent. From (5.6d) we 
conclude that the y characteristic field is convergent. 
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Our second-order TVNI scheme can be described in these terms as the operation of 
a scheme with an overdivergent numerical characteristic field on a suitably modified 
overconvergent characteristic field that results in a cancellation to 0(4*) of the error. 
This rather unusual mechanism allows the scheme to achieve both high resolution 
and strong entropy enforcement, a task that seems self-contradictory when considered 
within the context of artificial viscosity methods. This model also serves to explain 
the rather uniform high resolution of shocks with respect to their strength and speed 
of propagation, and with respect to the values of E in (5.4) and the CFL number used 
in the computation. 

We turn now to discuss the questions of entropy and resolution in a linearly 
degenerate field. The only possible waves in this field are contact discontinuities, for 
which the entropy jump inequality turns out to be an equality, i.e., a 
Rankine-Hugoniot relation for the entropy function. Consequently, there are no 
entropy considerations in a linearly degenerate field. 

The Riemann invariants of this field, one of which is the characteristicspeed, are 
the same on both sides of the contact discontinuity; the latter travels passively with 
the speed of the characteristic field. Unlike shocks, contact discontinuities do not 
form spontaneously, and may be present in the solution either by being present in the 
initial data or as a result of shock interaction (see [ 121). Because of all these facts, 
the computation of a contact discontinuity is very much like that of (5.1) for the 
scalar constant coeflicient case (see [5]). 

Since the characteristic field in a contact discontinuity region is parallel, even a 
slight divergence of the numerical characteristic field (h - a) in (5.6~) brings about a 
rather severe loss of resolution. We may prevent excessive smearing by modifying the 
numerical characteristic field to be slightly convergent in this region (see [5,6]). To 
do so we increase the convergence of the y field by increasing g in (4.8) as follows: 
We replace (4.8~) in a linearly degenerate k-field by 

g, = El + ei H[, 

where g, is the quantity defined by the RHS of (4.8c), 8, is such that 

(5.7a) 

4 = o(d), we,< 1, (5.7b) 

and ii is 

H, = S max [0, min(So I- 1/2aj- II23 uj+ l/2 la j+ l/2 I>19 (5.7c) 

where S = sgn(o,+ r12) and u/+ ,,2 = a@,+ 1,2) is restricted by 

O<u(v)< I-Iv]-;[Q(v)-v’] for Iv] < 1. (5.7d) 

It is easy to verify that the resulting scheme retains its second-order accuracy and 
remains TVNI under the same CFL restriction. A particular choice of 8 and u(v) that 
satisfies (5.7b) and (5.7d), respectively, is 
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ei= Iai+l/2 -ai-L/21/Oal+l/21 + Ia,-l/21)9 

u(v) = f [ 1 - Q(Y)]. 

(5.8a) 

(5.8b) 

We have experimented with the so-modified scheme on a variety of Riemann 
problems for the Euler equations of gasdynamics. In all these computations we have 
found high resolution of contact discontinuities. Although the decomposition of 
(Vi+, - Vi) into the different characteristic field (4.7) is only approximate, we find 
that the modification in the linearly degenerate field (5.7) does not significantly 
change the waves in the other fields. 

Remark 1. We may enhance resolution and entropy enforcement in the genuinely 
nonlinear fields by increasing y where the k-characteristic field is convergent and 
decreasing it where the field is locally divergent. To accomplish this, we let Bi in 
(5.7a) satisfy 

ei = O(d), -1<e,< 1 (5.9a) 

and construct it so that 

sgn Bi = -sgn(a,+ i - ai)* (5.9b) 

Our preliminary experiments in two-dimensional calculations using dimensional 
splitting indicate a need for such an enhancement mechanism. We find no need for 
improvement in our one-dimensional computations. 

Remark 2. Earlier in our investigation we pursued .a different avenue to enforce 
entropy inequality. This approach is motivated by the representation of first-order 
scheme (5.3) as a Godunov-type, and by Liu’s theory [ 131 on generalizing the 
Oleinik entropy condition to systems of conservation laws. In this approach we add a 
nonnegative entropy viscosity term to Q(x) = 1x1 in each of the characteristic fields; 
this term is a measure of the violation of the Oleinik entropy condition in the 
particular characteristic field. Thus it vanishes for admissible discontinuities, but if 
large enough, it enforces entropy inequality through viscosity whenever the approx- 
imate solution is inadmissible (see [9, 10, 111). 

This technique is elegant and amenable to rigorous analysis. However, it 
complicates the programming, increases the CPU time, and above all it does not 
perform as well as the simple correction to Q(x) in (5.4). Though with reluctance, we 
give precedence to computational efficiency over neat analysis, and pursue it no 
further. 



In this section we describe how to apply our new scheme (4.8) to the Euler 
equations of gasdynamics, 

w, + f(w), = 0, (6.la) 

P 
w= m 

i 

(6. lb) 
E 

), f(w)=uw+ ($ 

p=(y- l)(E-j&). (6. lc) 

Here p, U, p, and E are the density, velocity, pressure, and total energy, respectively; 
m = pu is the momentum and we take y = 1.4. 

The eigenvalues of the Jacobian matrix A(w) = f, are 
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6. APPLICATION TO EULER EQUATIONS OF GASDYNAMICS 

u,(w) = 24 -c, a*(w) = u, 

where c is the sound speed, c = (yplp)“*. 
The corresponding right eigenvectors are 

a,(w) = 24 + c, (6.2a) 

where H = (E + p)/p = c’/(y - 1) + $u’ is the enthalpy. 
Let c?(w,, w,), k = 1, 2, 3, be the solution of the following system of linear 

equations (4.7): 

WR-WL= i akRk( V(WL) WR)). (6.3a) 
k=l 

where V(wt, wR) (4.6) is some average state; denote its velocity and sound speed by 
u^ and c^, respectively. To calculate ak in (6.3a) we first evaluate 

C, = (y - l>{ [E] + fzZ*[p] - u^[m]}/t*, (6.3b) 

c2 = {[ml -u^bl~K (6.3~) 

where [b] = b, - b,; then the ak in (6.3a) are obtained by 

CY’ = f(C, - C,), a2 = [PI - c,, a3 = f(C, + C,). (6.3d) 

The second characteristic field corresponding to the eigenvalue u is linearly 
degenerate, i.e., a’,R’ s 0; the other characteristic fields corresponding to the eigen- 
values u f c are genuinely nonlinear. 



380 AM1 HARTEN 

We note that in computing A+ ,,* in (4.8b), one could take advantage of the simple 
form of the Rk in (6.2b). 

Next we show how to implement Roe’s linearization technique (4.14)-(4.15) in the 
above algorithm. Roe presents a particular form of averaging V(+, wa) such that for 
the Euler equations of gadynamics, the mean value Jacobian A(w,, wa) in (4.14a) 
can be expressed by (4.16). This averaging takes the form 

iii+ 112 = @“2u>l@1’2>, 4+,,2 = (P”~H)/@“~), 

;j+ l/2 = {(Y - w%+ I,2 - tl;,‘, I,Z)l 1’29 

(6.4a) 

where (b) denotes the arithmetic mean 

(b) = iv, + b,+ 1)’ (6.4b) 

Therefore to use Roe’s linearization in our scheme all one has to do is to compute 
ijij+1/2 and ;j+1/2 in (6.2)-(6.3) by (6.4). 

We remark that the averaging in (6.4) is rather expensive. Our experiments 
indicate that in many applications the simple arithmethic average (6.4b) will do just 
as well. 

7. NUMERICAL EXPERIMENTS 

In this section we present some numerical experiments that demonstrate the perfor- 
mance of the proposed second order accurate scheme. We consider here three 
versions of it; 

v~+'=v~-~cJ+~/2-~j_*/2), 

s,+v2=+ [S(v,)+f@,,,)-f 2 /3j+,,2R;+,i2]. 
k-l 

(7. la) 

(7.lb) 

By ULT 1 we denote scheme (7.1) with 

P:+ 1/2 = Q"@,"+ 1/2 + Y/“+ ~2) a:+ 1/2 - <g.: + g,“, 11, (7.2) 

where gj and Yj+ ~2 are defined by (4.8). By ULT 1C we denote scheme (7.1)-(7.2), 
with modification (5.7)-(5.8) in the linearly degenerate field. 

We also experiment with the simplified version 

P,+ 1,2 = Qbj, ~2) a/+ 1/z - 2G,+ ~23 (7.3) 

where G,, 1,2 is defined by (4.17); we denote this version by ULT2. 
For comparison sake we also present calculations with the following two schemes: 
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(i) The second order accurate Lax-Wendroff-type scheme (7.1) with 

Pjk+ l/Z = <$+ J4+ l/2 (7.4) 

which is referred to as the LW scheme; 
(ii) the first order accurate Godunov-type scheme of Roe (see [ 10, 15]), which is 

defined by (7.1) with 

and is referred to as the ROE scheme. 
In all the schemes and experiments reported herein we use the Roe linearization 

(6.3)-(6.4). 

I. The Shock Tube Problem 

We consider now a Riemann problem 

w(x, 0) = w, 3 x < 0, 
= w,, x > 0, (7.6) 

for the Euler equations of a polytropic gas (6.1). Our first set of data is 

(7.7) 

Other numerical experiments with this problem are reported in [6] and the references 
cited there. 

In Figs. 2a-d we show the results obtained by the ROE, LW, ULT 1, and ULT 1C 
schemes. The numerical values are shown by circles; the exact solution is shown by 
the solid line. The calculations in Fig. 2 were performed with 100 time steps under 
the CFL restriction p= 0.95 in (4.13), and 140 cells. 

In Fig. 3 we apply the ULT 1C scheme to a different set of data for the Riemann 
problem (7.6) 

WL=( n,); W,= (iit:). (7.8a) 

Other numerical experiments with this problem are presented in [ 161. The 
calcualtions in Fig. 3 were performed with 50 time steps under the CFL restriction 
P = 0.95 in (4.13), with 100 cells. 

We would like to make the following remarks regarding the calculations in Figs. 2 
and 3: 
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FIG. 2. (a) ROE scheme for (7.7); (b) LW scheme for (7.7); (c) ULTl scheme for (7.7); (d) 
ULT IC scheme for (7.7). 
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FIG. 2-Continued. 
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FIG. 3. ULT 1C scheme for (7.8). 
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(1) Modification (5.7)-(5.8) in the linearly degenerate field improves the 
resolution of the contact discontinuity, but does not produce any noticeable change in 
the other waves. 

(2) The calculations in these figures were performed with Qk(x) = 1x1 for all k; 
nevertheless, the solution has properly developed. This fact supports our assumption 
that entropy violation in this case is possible only if there is a sonic point in an 
expanding region. To test the performance of the scheme in the latter case, we have 
applied ULT 1 with Q(x)defined by (5.4) with E = 0.1 to the data. 

(7.8b) 

these data are obtained by superposing a uniform translation with the speed of 0.5 on 
the data in (7.8a), thus resulting in a sonic point in the rarefaction wave. The 
numerical results (up to the constant shift in velocity) look almost identical to those 
of Fig. 3. 

To further test the entropy enforcement and the resolution of the scheme, we 
consider now a Riemann problem where the two states, say u, and u2, satisfy the 
Rankine-Hugoniot relations in the direction of the field u -c, with a zero speed of 
propagation. Fixing the state u, by assigning values to p, , P, , and the Mach number 
M, = u,/c,, we determine the state vZ by 

P,IP, = Gw4: - Y + lY(Y + 119 

uz/u,=(2/M:+Y-l)/(Y+l), 

P2lPl= ~,I~*. 

(7.9) 

In Fig. 4 we test the scheme ULT2 on stationary shock (7.6) with W, = u, and 
W, = vZ.. First we set p, = P, = 1, M, = 4 (which gives PJP, = 18.5) and test the 
scheme for resolution. Figures 4a and b show the pressure profiles of ULT2 with 
Q(x) defined by (5.4) with E = 0.1 and E = 0.25, respectively. In Fig. 4c we test 
ULT2 with E = 0.1 for robustness by applying it to the very strong shock 
p, = P, = 1, M, = 10, i.e., a pressure ratio of PJP, = 116.5. 

Next, in Fig. 5 we test the scheme for entropy enforcement by applying it to the 
inadmissible “stationary” discontinuity W, = u2, WR=v, withp,=P,=l,M,=4. 
In Fig. 5 we show the solution of ULT2 with E = 0.1 in (5.4). We recall that the 
discontinuity in Fig 5 is an entropy-violating stationary solution for ULT2 with 
& = 0. 

The calculations in Figs. 4 and 5 were performed with 50 time steps under the 
CFL restriction h4= 0.95 in (4.13) with 100 cells. 

We remark that for all the Riemann problems considered here, we found the 
solutions of ULT 1, ULT 1C and ULT2 to be very much alike (except for the obvious 
improved resolution of contact discontinuities in ULT 1C). 

58 I/49/3-3 
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FIG. 4. ULT2 scheme with (a) E = 0.1 (PJP, = 18.5), (b) E = 0.25 (PJP, = 18.5), (c) E = 0.1 
(PJP, = 1.165 x 10’). 

II. The Quasi 1 - D Nozzle Problem 

We consider an axisymmetric nozzle with a cross-sectional area A(x). The cross- 
sectional average of the flow satisfies the following one-dimensional system of 
equations: 

wt + f(w), = -s(w, x), s(w, x) = 

where w, f(w), and p are given in (6.1). 
! 0 

PWl~) 
0 

, 1 
(7.10a) 
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FIG. 5. ULT2 with E = 0.1 for a stationary expansion shock. 

In Figs. 6, 7, and 8 ’ we present numerical approximations to steady state solutions 
of (7.10a). In Figs. 6 and 7 we show solutions for a divergent nozzle with cross- 
sectional area 

A(x) = 1.398 + 0.347 tanh(0.8x - 4); (7. lob) 

the flow condition is supersonic at the entrance and subsonic at the exit. Figs. 6a and 
b show steady state solutions on a crude mesh of the ROE and ULT 1 schemes, 
respectively. Figure 7 shows the ULT 1 results for the same problem on a finer mesh. 

’ These figures are courtesy of Helen C. Yee of the NASA-Ames Research Center. See 1191 for more 
details. 
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FIG. 6. (a) ROE scheme, (b) ULT 1 scheme for the divergent nozzle (7.10). 
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FIG. 7. ULT 1 scheme for (7.10) on a finer grid. 
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FIG. 8. ULT 1 scheme for the convergent-divergent nozzle (7.11). 

In Fig. 8 we show a steady state solution of the ULT 1 scheme for a convergent- 
divergent nozzle with cross-sectional area 

A(x) = 1 + (A, - 1)(1 -x/5)*, x< 5, 

= 1 +&- l)](X-5)/k-5)12, x> 5, 
(7.11) 

where A 0 = entrance area, A r = exit area. Here the flow is subsonic at the entrance as 
well as at the exit. 

The exact solutions in Figs. 6-8 are shown by the solid curves; the values of the 
numerical solutions are indicated by a circle. 

III. 2 - D Flow through a Duct 

In Figs. 9a and b we show solutions to the problem of the flow of air through a 
duct containing a step. Initially the flow is everywhere to the right at Mach 3, with 
p = 1.4, p = 1, and c = 1. The duct width is 1, its length is 3, and the step of height 
0.2 is located a distance 0.6 from the entrance. This problem was used by Woodward 
and Colella [ 181 to test the performance of various numerical schemes. In Fig. 9 we 
show the results at f = 4 with a crude uniform Cartesian grid with Ax = dy = 0.1 (i.e., 
a 10 X 30 grid). 

The solutions in Figure 9 were obtained by a Strang-type dimensional splitting of 
the form 

V n+’ = Lv”, (7.12a) 

L = L,L,L,L,, (7.12b) 
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FIG. 9. Density contours with a 10 x 30 grid for (a) the hybrid scheme (7.13) and (b) the ULT 1C 
scheme. 

where L, and L, are one-dimensional finite difference operators approximating 

L, : w, + f(w), = 0, L,: w, + g(w), = 0. (7.12c) 

If L, and L, are second order accurate approximations to the one-dimensional 
equations in (7.12c), then scheme (7.12a) and (7.12b) is a second order accurate 
approximation to the two-dimensional problem 

w, + f(w), + g(w), = 0. (7.12d) 

In Fig. 9a we show for comparison sake the results of second order accurate 
scheme (7.1) with 

P,“, l/2 = [($+ 1,2)2 + 3, 1,21 ai+ L,2 ; (7.13) 

here d,+ L,z is a switch defined by 

8j+ 1~2 = max(e,, ej+ A (7.14) 

where dj is (5.8a) for all k. This scheme can be regarded as a hybrid of LW scheme 
(7.4) with a first order accurate scheme, which is (3.1) with Q(x) = x2 + a (see Fig. 1 
and [6]). 
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In Fig. 9b we show the results of a version of ULT 1C which is defined by (7.1) 
with 

Pj+ I/* = Q( “j+ I/2 + C1 + 2ej+ 112) Yj+ l/2) aj+ L/2 - t1 + 28j+ 1/2)(gj + gj+ 119 t7*15) 

where for all k, Q(x) = x2 + a, gj and yj+ ,,2 are (4.8~) and (4.8e), respectively, and 
e,+ l/Z is (7.14). 

Both calculations were performed with a CFL restriction of 0.75. The corner of the 
step was treated as a sharp corner without any rounding (or equivalent addition of 
artificial viscosity). Figures 9a and b show 30 equally spaced density contours. 

Figure 9b clearly demonstrates that the high resolution of the proposed scheme in 
one-dimensional problems is also obtainable in two-dimensional calculations. 

Altogether we find the performance of the new second order ‘accurate scheme to be 
quite pleasing. We note that the scheme is simple to program and requires not much 
more CPU time than a Lax-Wendroff scheme with some artificial viscosity. 
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