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Abstract: Use of the Finite-Difference Time-Domain (FDTD) method to
model nanoplasmonic structures continues to rise – more than 2700 papers
have been published in 2014 on FDTD simulations of surface plasmons.
However, a comprehensive study on the convergence and accuracy of the
method for nanoplasmonic structures has yet to be reported. Although
the method may be well-established in other areas of electromagnetics,
the peculiarities of nanoplasmonic problems are such that a targeted
study on convergence and accuracy is required. The availability of a
high-performance computing system (a massively parallel IBM Blue
Gene/Q) allows us to do this for the first time. We consider gold and
silver at optical wavelengths along with three “standard” nanoplasmonic
structures: a metal sphere, a metal dipole antenna and a metal bowtie
antenna – for the first structure comparisons with the analytical extinction,
scattering, and absorption coefficients based on Mie theory are possible.
We consider different ways to set-up the simulation domain, we vary the
mesh size to very small dimensions, we compare the simple Drude model
with the Drude model augmented with two critical points correction, we
compare single-precision to double-precision arithmetic, and we compare
two staircase meshing techniques, per-component and uniform. We find that
the Drude model with two critical points correction (at least) must be used
in general. Double-precision arithmetic is needed to avoid round-off errors
if highly converged results are sought. Per-component meshing increases
the accuracy when complex geometries are modeled, but the uniform
mesh works better for structures completely fillable by the Yee cell (e.g.,
rectangular structures). Generally, a mesh size of 0.25 nm is required to
achieve convergence of results to ∼ 1%. We determine how to optimally
setup the simulation domain, and in so doing we find that performing
scattering calculations within the near-field does not necessarily produces
large errors but reduces the computational resources required.
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1. Introduction

The FDTD method [1–3] is a very broadly applicable and powerful technique for computational
electromagnetics. Lumerical declares that the number of studies using its FDTD commercial
software is growing faster than 50% per year [4]. Due to its ability to handle complex struc-
tures and materials, the FDTD method has become a very important tool in nanophotonics and
nanoplasmonics over the past decade. In 2014, over 2700 articles have been published in the
field of plasmonics involving the FDTD method [5]. In nanoplasmonics, and especially for
nanoantennas and oddly-shaped scatterers, this is due to the fact that purely analytical methods
are not possible, and to calculate the near-fields properly one needs a full simulation.

One major drawback of FDTD is that it is essentially a brute-force calculation where the
computation time scales as the fourth order of the simulation domain size, and the memory
requirements as the third order [2]. In order to properly simulate nanoplasmonic structures,
for example, a fine resolution is required to adequately resolve plasmon propagation and/or
plasmonic resonances [3]. This can easily lead to simulations that require massively parallel
computation. As ever larger computer clusters become available, this allows ever bigger and
more finely resolved simulations. The use of high-performance computing (HPC) systems al-
lows us to push to very small mesh sizes in order to determine convergence of the results and
evaluate the accuracy of the method. Convergence issues have already been addressed in [6]
in the 2-D case, and in [7] for other methods used to model plasmonic waveguides. However,
a detailed 3-D investigation on the convergence of FDTD for nanoplamonics has not yet been
done. This paper presents such a study, aiming to fulfill two major goals: to present practical
guidelines for efficient FDTD simulations for nanoplasmonics, and to demonstrate the regimes
where FDTD gives unreliable results, including sizeable round-off errors. We focus here on
small nanoplasmonic structures, including single metallic spheres and nanoantennas.

We determine the onset of round-off error for the case of single-precision floating-point
arithmetic, we compare the standard Drude dispersion model for metals with the more complete
“Drude with two critical points” model (Drude+2CP), and we compare the convergence of per-
component staircase with uniform staircase meshing.

Staircasing can be one of the main source of errors in FDTD. Advanced subcell techniques
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to model curved surfaces in FDTD for nondispersive media are very well known and used.
These include the “conformal mesh” formulated in [8], the “contour-path effective permittivity”
method introduced in [9], and “subpixel smoothing” proposed in [10]. There have been several
works that aim to extend these techniques to dispersive media. A conformal mesh-based imple-
mentation for the Drude model in 2-D is reported in [11]. Lumerical reports on their website
that they have recently implemented a conformal mesh capable of modelling several disper-
sive materials including gold [12], although the formulation was not revealed. Previously, they
had reported that for plasmonic systems, the conformal mesh produced spurious resonances at
longer wavelengths that led to poorer convergence than a staircase mesh for broadband sim-
ulations [6]. The conformal meshes do converge better however at smaller mesh sizes, and
for narrow bands near the resonance peaks. The contour-path effective permittivity method has
been extended to dispersive media, and tested for the Drude model in 2-D [13,14]. The subpixel
method has been extended to models with an arbitrary number of Debye, Drude and Lorentz
terms, and tested in 3-D, but only for Drude dispersion [15]. An improvement has been recently
proposed in [16], and was tested for the Lorentz model in 2-D. Although these techniques work
with a variety of dispersive models, the implementation for the Drude+2CP model in 3-D is
still not present in the literature. For this reason, and the fact that the per-component staircase
meshing technique is still the most widely used, this is the one we consider in this study. Fur-
thermore, this simple mesh does not add complexity to the surfaces and preserves the scalability
of the code which is a critical aspect of parallel computing.

In Section 2 the simulation approach is described. In Section 3 each FDTD setup parameter
is investigated in order to understand how it influences the accuracy. Numerical and theoretical
results are compared and the optimal simulation domain is obtained. We use the theory of the
diffraction of a plane wave by a sphere as analytic reference [17–19]. The convergence study
is reported in Section 4 for the sphere and for two important nanostructures in plasmonics, the
dipole and the bowtie nanoantennas, for which closed-form solutions do not exist.

This study has been conducted using the Southern Ontario Smart Computing Innovation
Platform (SOSCIP) Blue Gene/Q [20] supercomputer located at the University of Toronto’s
SciNet HPC facility [21].

2. Simulation approach

In this section, we describe the approach that we use to study the convergence of the FDTD
method for gold and silver nanostructures surrounded by air. We use an in-house parallel
FDTD code. The nanostructures considered are single nanospheres, dipole and bowtie nanoan-
tennas. They are excited with a broad-band electromagnetic plane wave pulse, injected using
the total-field/scattered-field method (TF/SF) through the Huygen’s box source [22, 23]. We
use an auxiliary 1-D propagator, and since we consider only perpendicular incidence we have
no leakage into the scattered-field region. The pulse function is a normalized raised cosine
f (t) =

[(
1− cos(2π fmaxt)

)
/2
]3, where fmax is the maximum frequency we want to analyze.

The presence of a nonzero DC component does not influence our analysis, since in the simula-
tion domain there are no electromagnetic sources but only polarizable media. A derived raised
cosine (zero DC component) has also been tested and no differences have been appreciated for
the calculation of the coefficients of interest in this study.

Convolutional perfectly matched layer (CPML) absorbing boundary conditions [2, 24, 25]
have been used to truncate the simulation domain. CPMLs are based on a recursive-convolution
technique and on the stretched-coordinate form of the PML. They handle dispersive materials
and they work well down to DC. Both raised cosine and derived raised cosine plane wave pulses
propagating in air have been tested for a 1 nm space-step. The air/CPML interface produced a
reflectance of the order of 10−12 to 10−11 for 20 CPML cells, and 10−10 for 10 CPML cells.
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In order to model the noble metals over the entire visible range and take into account the
interband transitions at higher frequencies, it is necessary to apply the two critical points (2CP)
correction to the Drude model [26]. The parameters proposed in [27–29] to fit the experimen-
tal data for gold and silver [30, 31] have been compared; there were some small differences
between the two sets of parameters, but none that would be critical to this particular study.
We therefore implemented the Drude+2CP model, with fitting parameters reported in [27]. The
relative complex permittivity is εr(ω) = ε∞ +χ(ω) = εRe(ω)+ iεIm(ω), with

χ(ω) =
−ω2

D
ω(ω + iγ)

+
2

∑
p=1

ApΩp

(
eiφp

Ωp−ω− iΓp
+

e−iφp

Ωp +ω + iΓp

)
, (1)

where ε∞ is the infinite frequency permittivity, εRe and εIm are the real and imaginary part of
εr, i the imaginary unit with the time convention e−iωt , and χ is the complex susceptibility. In
Eq. (1) the first RHS term is the Drude equation, the second term the critical points correction,
where Ap, Ωp, φp, and Γp are parameters to fit the experimental data. A comparison with the
standard Drude model, in wavelength regimes where it should be valid, is shown in Section 4.

The Drude+2CP model has been implemented with the auxiliary differential equation (ADE)
method [32] and it is valid over the range 200−1000 nm. We have found that the ADE method
[33] for the FDTD analysis of dispersive media gives more accurate results than the recursive
convolution (RC) approach [34–36].

We use a uniform grid for the space discretization and the same space-step in the three
Cartesian coordinates (∆x = ∆y = ∆z). The time-step is fixed at ∆t = ∆x/(2co) according to
the Courant-Friedrichs-Lewy stability condition for air ∆t ≤ ∆x/(

√
3co) [37, 38] and for noble

metals ∆t ≤ ∆x/(
√

3c∞) [39], where co is the vacuum speed of light and c∞ = co/
√

ε∞.
The per-component mesh assigns the permittivity εr(ω,~r) to each electric field component

Ex, Ey and Ez based on the position of the sampling point in the Yee cell relative to the nanos-
tructure, as illustrated in Fig. 1(a). If the field component is sampled inside the nano-object
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Fig. 1: (a) Yee FDTD cell and per-component meshing technique illustration (not in scale).
(b) FDTD simulation domain setup: (A) CPML thickness, (B) TF/SF position, (C) Ssca position,
(D) physical box length, and (E) Sabs position.

we assign to that component the complex permittivity of the metal, if the sampling point is
outside we assign instead the dielectric constant of air. In the uniform staircase method each
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Yee cell is made entirely of one material and therefore the description of curved geometries is
less accurate. This is the simplest meshing technique, it requires less memory to describe the
geometry, and we found it works better with rectangular structures. The simulation domain is
a cube, and is composed of three distinct regions as shown schematically in Fig. 1(b). The out-
ermost region contains the CPML boundary conditions and its dimension is called the CPML
thickness (A). The middle region is the scattered-field region. Its thickness is determined by the
TF/SF position (B). The scattered-field region contains a closed integrating surface Ssca (C).
Since the fields within the CPMLs have no physical meaning, the length of the simulation do-
main excluding the CPMLs is called the physical box length (D). The distance of the CPMLs
from the origin (CPML distance) is a half of the physical box length. The inner region is the
total-field region; it contains within it the nanostructure and another closed integrating surface,
Sabs (E), that encloses the nano-object. The origin of the system is taken at the center of the
cubic domain. Unless otherwise specified all the positions refer to the origin.

The frequency-domain responses of the nanospheres and nanoantennas are well character-
ized by their scattering cross section Qsca, absorption cross-section Qabs, and extinction cross-
section Qext . These describe the scattered, absorbed and extinct power normalized to the inci-
dent power density [18]. In general, these must be calculated numerically, as described below.
In the special case of a nanosphere, these quantities are analytically known from Mie the-
ory [17–19]. For a linearly polarized plane wave excitation they are given by

Qext =
2π

k2
2

Re
∞

∑
n=1

(2n+1)
(

ar
n +br

n

)
, (2)

Qsca =
2π

k2
2

Re
∞

∑
n=1

(2n+1)
(
|ar

n|
2 + |br

n|
2
)
, (3)

Qabs = Qext −Qsca, (4)

where ar
n and br

n are combinations of the spherical Bessel and Hankel functions of the first
kind, and depend on the radius of the sphere, on the wavenumbers in the two media involved
(k1 for the metallic sphere and k2 for the infinite homogeneous external medium, air in this
case). Equations (2)–(4) are valid in the far-field (k2R >> 1, where R is the radial distance from
the sphere’s center), and they are in accord with the Mie theory correction for metallic spheres
recently proposed in [40]. The far-field condition for plasmonic spheres is satisfied at distances
of the order of 100 nm as we will see in Section 3.

We consider dimensionless versions of these cross-sections: the scattering coefficient Csca,
the absorption coefficient Cabs, and the extinction coefficient Cext . They are obtained by dividing
the respective cross-section by the geometrical area Ageom of the nanostructure, i.e. the area of
the projection of the structure on a plane perpendicular to the incident field wavevector.

We use the “Poynting vector flux method” to calculate Csca numerically via

Csca =

∫
Ssca

<~S> ·n̂dS

<~Sinc> Ageom
, (5)

where <~S>= 1
2 Re
{
~E × ~H∗

}
is the time-averaged Poynting vector and n̂ is the unit vector

normal to Ssca. It is normalized by the incident plane wave’s time-averaged Poynting vector at
the same frequency <~Sinc>= 1

2 Re
{
~Einc× ~H∗inc

}
. Interpolation to center the fields at the same

position is generally required. All the field components are in the frequency-domain, obtained
from time-domain data by performing an in-line discrete Fourier transform (DFT) for each
analysis frequency over the regions of interest in the simulation domain. All the coefficients
have a frequency/wavelength dependence.
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While Cabs could be calculated in a similar manner using Sabs, we found more stable numer-
ical results when we use instead the “sigma-based method” (a comparison of the two methods
is provided in Section 3.5), given by

Cabs =

∫
V σ(ω)Nm ∑i δiE2

i dV

<~Sinc> Ageom
, (6)

where V is the volume of the metallic nano-object, i = {x,y,z}, and σ(ω) = ωε0εIm(ω) is the
material conductivity. The quantity δi = 1 if the Ei component of the electric field is located
inside the metallic nanostructure, otherwise δi = 0. For every grid cell in V we define Nm =
1
3 ∑i δi, so Nm = 1

3 if only one component is inside V , Nm = 2
3 if two components are inside V ,

and Nm = 1 if the whole Yee cell is inside V . This formula takes advantage of the per-component
mesh used by default in this study, and Nm can assume three different values Nm =

{ 1
3 ,

2
3 ,1
}

;
with the uniform staircase mesh we have Nm = 1.

The extinction coefficient Cext is numerically evaluated as Csca+Cabs; it is the parameter that
best synthesizes the results, thus it is the one used for the error evaluation in next sections.

For the sphere the numerical results can be compared to the analytical solutions described
above. Verifying the convergence in the nanosphere case then allows us to validate our algo-
rithm and ultimately assess the accuracy of the method. We define the percentage error as

%error = 100×

∣∣∣∣∣numerical#−analytic#
analytic#

∣∣∣∣∣, (7)

the mean percentage error by averaging the %error of Eq. (7) over N wavelengths

<%error>=
1
N

N

∑
λ=1

%error, (8)

and the mean %error deviation as

m%ed =
1
N

N

∑
λ=1

∣∣%error−asymptotic%error
∣∣, (9)

where asymptotic%error is the asymptotic value of the %error in the parameter space. For
the case of the nanoantennas, no analytical solutions exist so we use an extrapolated value as
the “analytical” one and emphasize that the %error in these cases is interpreted as an antici-
pated error. The analytical and extrapolated values are plotted on the convergence curves at an
abscissa value of 0 (i.e. for a space-step size of 0).

3. Optimizing the simulation domain

In order to optimally set up the simulation domain, we perform a preliminary study on gold and
silver nanospheres in air based on key calculation parameters. In Sections 3.1–3.4, we vary,
one at a time, each of the lengths (A) to (D) depicted in Fig. 1(b) to give us insight on how to
properly choose these parameters. The length (E) is dealt with separately in Section 3.5.

We have defined a set of nominal simulation parameters: CPML thickness of 20 nm, TF/SF
position at 180 nm, Ssca position at 190 nm, and physical box length of 400 nm. We use
double-precision arithmetic, Drude+2CP dispersive model, per-component mesh, and sigma-
based method for Cabs. The nanosphere has radius 60 nm and center in the origin.

In this section we use a slightly coarse space-step (∆x = 1 nm) because we are not as in-
terested in the absolute value of the error but in the variation of the error with respect to its
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asymptotic limit. This can be quantified by the maximum value of the m%ed. In the next sec-
tion, we consider the effect of space-step size on absolute error in detail.

The total simulation duration was taken to be 25 fs, which is long after the pulse has gone,
in order to guarantee the steady-state regime. This corresponds to 15000 FDTD time iterations
for the nominal simulation. The gold nanosphere is investigated over the wavelength range
400− 700 nm, and the silver nanosphere over the range 300− 600 nm, each in ∆λ = 10 nm
increments. Thus in a single run of the code, N = 31 wavelengths are analyzed.

3.1. Effect of the CPML thickness

The CPML thickness has to be chosen large enough to simulate free-space propagation beyond
the simulation volume without reflections at the boundaries but small enough to not signifi-
cantly increase the simulation domain size. Using the nominal geometry, we investigated the
effect of varying only this parameter, and the large physical box allows us to avoid the effects
of the other boxes involved. Thicknesses of 2, 5, 10, 20 and 40 nm were considered. Since we
used a space-step of 1 nm, these correspond to 2, 5, 10, 20 and 40 CPML cells, respectively.
The CPML thickness influences both Csca and Cabs, and we summarize the results by the Cext
m%ed defined in Eq. (9). This is nearly constant up to and including a thickness of 10 nm for all
wavelengths. For a 5 nm thickness a small error shows up – max(Cext m%ed)∼ 0.04% for Ag
and ∼ 0.05% for Au, increasing down to 2 nm – max(Cext m%ed)∼ 1.5% for Ag and ∼ 1.1%
for Au, but the spectral shape is maintained. The 2-cell CPML thickness is of interest in the
convergence study only for the coarsest space-step used (10 nm).

3.2. Effect of the TF/SF position

Starting from the nominal geometry, the TF/SF position was changed up to almost touching
the nanosphere (1 nm away). We find that this parameter influences both Csca and Cabs in a
negligible way – max(Cext m%ed) ∼ 0.01% for Ag and ∼ 0.03% for Au. This means that as
long as the TF/SF box completely encloses the nanosphere, the computations are accurate.

3.3. Effect of the Ssca position

To determine the effect of the Ssca position, we place the TF/SF box 1 nm from the sphere so
that the Csca box can be enlarged. The other parameters are the nominal ones. We calculated
Csca in the scattered-field region with the Ssca position ranging from 62 to 190 nm, i.e. 2 to 130
nm from the sphere. The Csca %error has a slow exponential trend as shown in Fig. 2(a) for
the silver nanosphere; similar behaviour was observed for gold. In the same figure is depicted
Csca m%ed, and the asymptotic value is taken at Ssca = 190 nm. The Ssca position influences
Csca but not Cabs – max(Cext m%ed)∼ 0.6% for Ag and ∼ 0.7% for Au. A distance ∼ 100 nm
from the sphere already gives us an optimal result in terms of error for both gold and silver.
The larger error in the vicinity of the sphere is due to the application of Eqs. (2)–(4) in the near-
field, whereas they are valid in the far-field. We must consider also the presence of interpolation
errors because in the near-field the decay of the fields is more rapid.

3.4. Effect of the physical box length / CPML distance

Setting the Sabs, TF/SF, and Ssca positions at 61, 62 and 63 nm from the sphere, respectively, a
CPML distance ranging from 64 to 200 nm has been simulated. This is equivalent to a variation
of the physical box length from 128 to 400 nm. This parameter influences both Csca and Cabs,
and we found a negligible increase of the error at the nearest distance – max(Cext m%ed) ∼
0.004% for Ag and ∼ 0.007% for Au. The error on Csca can be reduced only calculating it in
the far-field, based on the results of the previous paragraph. To this end we can enlarge the
simulation domain, or maintain the simulation domain small and perform a near-to-far-field

#236528 - $15.00 USD Received 03 Dec 2014; accepted 23 Mar 2015; published 14 Apr 2015 
(C) 2015 OSA 20 Apr 2015 | Vol. 23, No. 8 | DOI:10.1364/OE.23.010481 | OPTICS EXPRESS 10488 



transformation. If we can tolerate an error increase of a percentage less than 1% for both gold
and silver spheres, we conclude that the physical box length can be chosen large enough to
accomodate the sphere plus a few more grid cells for the TF/SF and Csca boxes. The TF/SF box
only has to contain the structure without touching it, and the distance of the CPMLs from the
nanostructure has only a minor influence on the accuracy. This observation is important to save
computational resources. In nanoplasmonics thus we can apply equations valid in the far-field
zone to the near-field zone and obtain results that have a small error.

3.5. Calculation of Cabs

As anticipated, another approach to calculate Cabs follows from Eq. (5) where the integral is
performed over Sabs. The sigma-based method for Cabs of Eq. (6) is computationally heavier
because the DFT is calculated over the whole volume but more accurate (not affected by inter-
polation errors). With the Poynting vector flux method less calculations are required; the DFT
can be calculated on Ssca and Sabs only. In Fig. 2(b) we see that Cabs %error is really sensitive to
the Sabs position, and it oscillates as the Sabs position varies from 61 to 185 nm. In the same plot
with the same colours but without markers we have Cabs %error with the sigma-based method.
It is constant because the calculation does not depend on the setup parameters, and generally
lower than the %error obtained with the Poynting vector flux. Reducing the mesh size to 0.5
nm we find that oscillations are still present with the same shape and smaller amplitude. For
these reasons the sigma-based method is used in this study.
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Fig. 2: Simulation setup for silver sphere: (a) Ssca position effect and (b) Sabs position effect.

3.6. Scalability

The IBM Blue Gene/Q used for our study had 2048 nodes (though was recently upgraded to
4096 nodes), with each node having 16 cores (i.e. physical processors) and 16 GB of RAM. The
code is parallelized via a message passing interface (MPI) [41] protocol. The scalability study
was done for a standard plasmonic simulation with the nominal setup parameters described
above.

We call #nodes the number of nodes allocated, #cores the corresponding num-
ber of cores, np the number of MPI processes (or threads), and nr the number of
MPI processes that run on each node. The parameter #nodes can only assume a
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discrete set of values {64,128,256,512,1024,2048} and consequently also the #cores
{1024,2048,4096,8192,16384,32768}. Given that the #nodes depends essentially on the
memory needed, the simulation domain is decomposed into np = npx×npy×npz subdomains,
where npx, npy and npz are the number of MPI processes along the three Cartesian coordi-
nates [42–44]. It is good practice to have np = #nodes× nr in order to use all the allocated
cores (as is done in this study), but this is not mandatory, and np can assume whatever value.

The study has been conducted varying #cores, nr, and the optimization flag (−O, −O3,
−O5) [45]. Since each node has 16 cores, nr = 16 means that each core runs one MPI process,
nr = 32 and nr = 64 means respectively that 2 and 4 MPI processes share one core. It is possible
also to set nr < 16, but this would result in not using all the cores available in the node, so the
performance would be degraded. We always use nr ≥ 16. The highest level of optimization
always gives the best performance with no change in results. The mean percentage reduction
of the simulation time for −O5 with respect to −O is: 7% for nr = 16, 5% for nr = 32 and 2%
for nr = 64. The improvement is small, which means that the code is already quite optimized.

In Fig. 3 we plot the speed-up versus #cores and #nodes as we vary nr. The minimum #nodes
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Fig. 3: Scalability study.

allocable on the Blue Gene/Q is 64 nodes, i.e. 1024 cores. We roughly assumed a linear simu-
lation time from 1 to 1024 cores and extrapolated the value for a single processor simulation,
i.e. serial code. This was used as reference for the calculation of the speed-up.

Linear scalability, which is the ideal, is plotted in the figure. We find the speed-up is super-
linear up to 8192 cores for both nr = 32 and nr = 64, but even at very high #cores there is a
reasonable performance enhancement. The choice of nr is then important because it can im-
prove or degrade the performance, and increasing nr does not require more physical resources.

Nanoparticle subdomains require far more computational effort compared to air domains
due to the material model required to handle the dispersive nature of the metal, but 80− 90%
of the execution time is spent performing the DFT calculations. Since in our default simulation
the DFT is calculated over the whole domain (sigma-based method for Cabs), the computa-
tional load is nearly equally distributed amongst processes. Increasing #cores results in smaller
subdomains and the communication overhead increasingly limits the scalability (sub-linear per-
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formance). For larger simulation sizes we would expect better performance at larger #cores. As
soon as the quantity of computations decreases (less wavelengths, Poynting vector flux method
for Cabs), the scalability becomes worse due to the communications and to the load imbalance,
i.e. not evenly distributed amongst subdomains. The parallel FDTD algorithm needs blocking
send/receive point-to-point MPI communication routines that take place at the same time, and
the bottleneck occurs due to processes with higher computational load.

4. Convergence study

In this section, we study the convergence of Cext , Csca, and Cabs as a function of step size
for nanospheres, dipole and bowtie nanoantennas. The dimensions of the nanostructures were
chosen integer multiples of the space-steps of analysis. This allows us to simulate always the
same structure and more exactly show the effect of the mesh size on the convergence. A physical
box length of 300 nm, CPML thickness of 20 nm, TF/SF box at 130 nm, and Csca box at 140
nm have been chosen based on the studies reported in Section 3. A conservative approach has
been adopted to be sure that Ssca is within the range of good parameters, especially for dipole
and bowtie nanoantennas that show stronger field enhancement. Unless otherwise specified, we
use double-precision, Drude+2CP model, per-component mesh, and sigma-based method for
Cabs. The simulation volume was meshed with different space-steps: 10, 5, 2, 1, 0.5, 0.25 and
0.125 nm, and for each of them the time-step was scaled accordingly. The physical simulation
time was 25 fs, resulting in 1500, 3000, 7500, 15000, 30000, 60000 and 120000 FDTD time
iterations, respectively.
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Fig. 4: Light-nanostructure interaction: (a) silver sphere (left, Media 1), (b) gold dipole (middle,
Media 2), and (c) gold bowtie (right, Media 3).

In Fig. 4 we show, for each of the nanostructures considered in this paper, time-domain snap-
shots of the electric field module, as it results from the interaction with the z-polarized plane
wave pulse, propagating along y. A lateral view yz is provided for the silver per-component
sphere (left) and the gold uniform staircase dipole (middle), and a frontal view xz for the gold
per-component bowtie (right). The movies linked to in the figure caption have been generated
using a 0.25 nm mesh size. In the left and middle figures the feature on the right represents
the plane wave pulse that has just excited the nanostructures. In the right figure the pulse has
already gone through the bowtie nanoantenna. The color bar is saturated to better show the
details of the electric field evolution.

4.1. Sphere

As in Section 3, we compare Cext , Csca, and Cabs with the analytical Mie solution for the sphere
excited by a linearly polarized plane wave, but now we vary the space-step. The wavelength
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range of investigation and the sphere dimension are the same as in the previous section.
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Fig. 5: Per-component silver sphere Cext convergence: (a) and (b) spectra, (c) errors.

In Figs. 5, 6 and 7 we plot the Cext , Csca, and Cabs convergence study for the silver nanosphere.
The left plots show the spectra near resonance as they converge towards the analytic curve. The
middle plots show the spectrum values varying the step size for a couple of wavelengths near
resonance; at x = 0 we have the analytic solution. The right plots show the %error for the
indicated wavelengths and the <%error> over these wavelengths as a function of the mesh
size. They allow us to visualize in different ways the convergence to the analytical solution.
In middle and right figures we used a logarithmic x-axis representation. We see that 10 and
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Fig. 6: Per-component silver sphere Csca convergence: (a) and (b) spectra, (c) errors.

5 nm space-steps are too coarse, as the spectral shapes change dramatically and we observe
several numerical artefacts, such as resonance peaks that do not match in number and location.
A space-step of 2 nm is at least needed to obtain the proper spectrum shape. Looking at Fig.
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5(c), to obtain a Cext <%error> of 2%, 1% and 0.5%, 0.82, 0.38 and 0.18 nm discretization
step sizes are required respectively. These values come from a linear interpolation.

In the left figures we observe that the convergence for smaller wavelengths is faster. This
corresponds to the interband transition region where εRe is positive and the metal behaves as
a dielectric. Thus surface plasmon polaritons are not present and a coarser discretization is
sufficient to model the dielectric behaviour of the metal.

The convergence is demonstrated down to a space-step of 0.125 nm, where a Cext <%error>
below 0.4% is observed. Qualitatively similar results have been obtained in the gold case. The
simulations for silver converge more slowly than those for gold. This is due to the fact that the
plasmonic resonance for silver occurs at a smaller λ , so the space-step required to describe the
phenomena with the same level of accuracy, i.e. getting the same errors, is smaller.

Although we decided to use in this paper the sigma-based technique to not have the uncer-
tainty on the Sabs position, for sufficiently small mesh sizes the Poynting vector flux method
shows similar convergence and accuracy, and becomes preferable because it requires less com-
putational resources.
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Fig. 7: Per-component silver sphere Cabs convergence: (a) and (b) spectra, (c) errors.

4.1.1. Per-component and uniform staircase mesh

In Fig. 8 we repeated the study of Fig. 5 using a uniform staircase instead of per-component
mesh. Uniform staircasing assigns the dispersive property of the noble metal to the entire Yee
cell only if the three electric field components sampling points are inside the nanostructure.
We could have assigned the metal permittivity also if two of the three components were inside,
for example, but for our study it makes sense to evaluate the more conservative case. The
slower convergence was expected since the former is able to better capture the geometry of
the nanosphere. From Fig. 8(c) we see that mesh sizes of 0.55, 0.27 and 0.12 nm are required
to get a Cext <%error> of 2%, 1% and 0.5%, respectively. This results in a 3× increase of
the simulation time to obtain the same <%error> as the per-component case, assuming linear
scalability and at parity computational resources.

4.1.2. Effect of the number precision

The study in Fig. 5 was repeated using single-precision instead of double-precision, and we
observe errors when the space-step decreases from 0.5 to 0.25 nm, as shown in Fig. 9. The
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Fig. 8: Uniform staircase silver sphere Cext convergence: (a) and (b) spectra, (c) errors.

behaviour down to 0.5 nm is equivalent to the double-precision case. Beyond this, the double-
precision simulations converge, while the single-precision simulations diverge. This is a strong
indicator that round-off errors are accumulating significantly. This is due to the presence in
the FDTD formulas of ratios like ∆Ei/∆x and ∆Hi/∆x with i = {x,y,z}, that become critical
when both the numerator and denominator decrease due to the space-step reduction. Even when
the code was changed to avoid the division by ∆x, i.e. fixing the ratio ∆t/∆x (equal in this
study to 0.5/co, based on the stability condition), the divergence is present and it is due to the
differences ∆Ei and ∆Hi that become smaller along with the space-step. We implemented the
FDTD updating formulas in two different ways, and the result did not change. Round-off errors
thus can (and do) accumulate in FDTD simulation, and the FDTD user must be aware of this.
We will see in Section 4.2.2 that they also can accumulate in double-precision.
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Fig. 9: Single-precision silver sphere Cext convergence: (a) and (b) spectra, (c) errors.
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4.1.3. Effect of the dispersive model

Although the standard Drude equation is not able to model the behaviour of gold and silver
in the interband transition region, it is still valid above the interband transition, i.e. ∼ 600 nm
for gold and ∼ 400 nm for silver. The study of Fig. 5 was repeated using the standard Drude
instead of the Drude+2CP model, and it is reported in Fig. 10. Of course in the first part of the
Cext spectrum, agreement between the models is not expected because the interband transitions
are not captured. Interestingly, in the range where the Drude model should be valid we observe
irregular convergence compared to the Drude+2CP model. Numerical artefacts are present in
Fig. 10(a) down to a very small space-step; we need to reach 0.5 nm to get a Cext <%error>
below 2% as shown in Fig. 10(c). This results in longer simulations. Improving the quality of
the model thus relaxes the computational effort, even if the code complexity is higher.
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Fig. 10: Single Drude silver sphere Cext convergence: (a) and (b) spectra, (c) errors.

4.2. Non spherical nanostructures

For nonspherical nano-objects we only have the numerical results from the simulations, because
an analytic solution for Cext and Csca does not exist. We thus verify the convergence by con-
sidering the absolute value of the coefficients, numerically calculated with the same approach
used for the sphere. We take as our reference value an extrapolated value at 0 that was found
from a polynomial fitting of our numerical results at step sizes of 1, 0.5 and 0.25 nm. In these
structures the edges and corners influence the convergence due to the high electric fields cre-
ated. The analysis was carried out for gold nanostructures in air over the range 200−1000 nm
for 33 wavelengths. The results available also for silver are similar. The plots follow the same
approach used for the sphere. The same legend is shared in Figs. 11(a,d), 11(b,c,e,f), 12(a,d),
and 12(b,c,e,f).

4.2.1. Dipole nanoantenna

The nanodipole, composed of two monopoles (parallelepipeds) separated by a gap, is oriented
along the z-direction with a length l = 160 nm, the thickness along the y-direction is t = 40 nm,
the width along the x-direction is w = 20 nm, and the gap along z is g = 20 nm. The results for
the gold dipole are shown in Fig. 11. The per-component based results are on top, the uniform
staircase ones on bottom. We see that for the nanodipole the uniform staircase mesh works
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Fig. 11: Gold dipole Cext convergence: per-component (top) and uniform staircase (bottom).

better, even the coarser space-step of 10 nm gives a decent result: the resonance wavelength is
within 3% error from the extrapolated one. This implies that for structures completely fillable
by the Yee cubic cell, i.e. with surfaces parallel to the sides of the cell, the uniform staircase
approach is preferable.

4.2.2. Bowtie nanoantenna

The bowtie nanoantenna considered has length l = 160 nm, thickness t = 40 nm, width w= 120
nm and gap g = 20 nm. The triangular shape is obtained considering two lines intersecting in
the center of the structure of angular coefficient ±m, where m = tan−1(l/w).

In Fig. 12 we show the results for the gold bowtie. The per-component method in this case
converges better, the coarser discretization already gives a good result, with a resonance peak
position within 1.5% error from the extrapolated value. This is due to the fact that a per-
component mesh is able to model more accurately the straight surfaces not parallel to the sides
of the Yee cell, and curved surfaces in general. This agrees with what we saw for the sphere.

As the mesh size decreases from 0.25 to 0.125 nm, for certain wavelengths Cext shows round-
off errors for both per-component and uniform staircase meshes, as can be seen in Figs. 12(c,f).
Reducing the space-step introduces divergences in the FDTD algorithm, as discussed in Section
4.1.2, but here we see it even for double-precision simulations.
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Fig. 12: Gold bowtie Cext convergence: per-component (top) and uniform staircase (bottom).

5. Conclusion and future trends

We studied the FDTD convergence for plasmonic nanostructures considering per-component
versus uniform staircase mesh, double versus single-precision arithmetic, and dispersive Drude
model with critical points versus standard Drude. We have seen that the per-component ap-
proach guarantees a faster convergence of the FDTD algorithm for the sphere and bowtie, while
the uniform staircase method works better for the dipole nanoantenna. Round-off errors can ap-
pear with decreasing mesh size in single and double-precision simulations. The Drude model,
in the range where it is valid, produces an irregular convergence with respect to the Drude+2CP
model for both gold and silver. Faster convergence results are expected using more advanced
meshing techniques, like conformal mesh and subpixel smoothing. Future work will aim to
implement these techniques for the Drude+2CP model in 3-D for more efficient plasmonic
simulations.
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