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Abstract. Live fuel moisture content (LFMC) influences fire activity at landscape scale and fire 

behavior in laboratory experiments. However, field evidences linking LFMC to fire behavior are very 

limited despite numerous field experiments. In the present study, we reanalyze a shrubland fire dataset 

with a special focus on LFMC to explain this counterintuitive outcome. We found that this controversy 

might result from three reasons. First, the range of experimental LFMC  data was too moist to reveal 

significant effect with the widespread exponential or power functions. Indeed, LFMC exhibited a strong 

effect below 100%, but marginal above this threshold, contrary to these functions. Second, we found 

that the LFMC significance was unlikely when the size of the dataset was smaller than 40. Finally, a 

complementary analysis suggested that 10 to 15% of random measurement error in variables could lead 

to an underestimation by 30 % of the LFMC effect. The effect of LFMC in field experiments is thus 

stronger than previously reported in the range prevailing during the actual French fire season and in 

accordance with observations at different scales. This highlights the need to improve our understanding 

of the relationship between LFMC and fire behavior to refine fire danger predictions. 

  

Short Abstract. Live fuel moisture content is a factor of fire rate of spread that might have been 

underestimated from field experiments in shrublands. Here, we show why, and evaluate the actual 

magnitude of its impact, which was found to be large for typical values occurring during fire seasons. 
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Introduction 

Live fuel moisture content (LFMC), which is the ratio of water mass to dry mass of vegetation, has for 

long been identified as a factor of fire behavior with threshold effects in Mediterranean shrub 

communities (Chandler et al. 1983). There is increasing evidence that LFMC strongly impacts fire 

activity at landscape scale (Dennison and Moritz 2009; Nolan et al. 2016; Pimont et al. 2018; Ruffault 

et al. 2018a). From laboratory to field experiment scale, the impact of LFMC on fire behavior remains, 

however, far more controversial (Alexander and Cruz 2013a; Finney et al. 2013). This knowledge gap 

is critical in a context of increasing drought conditions that might impact fuel moisture conditions and 

trigger some shifts in fire regimes (Flannigan et al. 2016). 

The influence of LFMC in fire behavior (here, rate of spread, ROS) models is most often either 

accounted for without distinguishing live and dead fuels (e.g. Rothermel 1972), or ignored (e.g. 

Catchpole et al. 1998). The first approach suggests an overall effect of the moisture of the fuels, which 

results in weighting LFMC and DFMC by their respective bulk density in empirical models (Marino et 

al. 2012). Although other studies reviewed in Finney et al. (2013) suggested that the impact of live and 

dead moistures on fire behavior could differ, they generally imply a significant impact of LFMC on 

ROS. This significance is supported by laboratory experiments, which clearly demonstrate an important 

effect of LFMC (Rossa et al. 2016). The second approach (i.e. ignoring LFMC) is supported by the 

limited number of field evidences linking fire behavior to LFMC in shrublands, despite numerous field 

experiments. In a review, Alexander and Cruz (2013a) showed that the relationship between ROS and 

LFMC was not significant in none of the 14 studied datasets. According to these authors, “It is possible 

that a small effect exists but the difficulty of controlling the environmental conditions in outdoor field 

experiments has so far precluded the quantification of this effect”. More recently, a larger dataset was 

gathered and statistical analysis revealed a statistically significant effect of LFMC (Anderson et al. 

2015), but this effect was very small and it only marginally improved the model performance. The 

authors concluded that this low influence of LFMC might be a consequence of existing correlations 
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between LFMC and vegetation height and bulk density. Also, the differences in impinging heat fluxes 

observed between laboratory and field experiments induce differences in combustion dynamics, which 

could explain the lower effect of LFMC observed in the field (Fernandes and Cruz 2012; Alexander and 

Cruz 2013a). Both arguments explain the counterintuitive discrepancy between field and laboratory and 

support the fact that LFMC can be neglected in an operational context. 

It is possible, however, that some significant LFMC effect truly exists in the field, but that past field 

experiments and statistical analyses failed to detect it. A first reason could be associated with the 

proportion between live and dead fuel, which exhibits much larger variations in shrublands than in other 

fuel types such as conifer forests, and might therefore affect the statistical relationship between LFMC 

and ROS (Alexander and Cruz 2013a). A slightly different assumption was recently supported in Rossa 

and Fernandes (2017b), which showed that monthly values of DFMC and LFMC were correlated, and 

hence suggested that such a correlation might explain why LFMC was not significant. In addition to the 

above, other reasons might be suggested to explain the limited effect of LFMC in shrublands. First, there 

is no consensus on the functional form of response function of ROS to LFMC (beyond the question of 

how it combines to DFMC), nor on how it combines with other factors (Sullivan 2009a&b). This 

functional form has never been determined from field experiments, so that the exponential or power 

decays that are usually fitted to field dataset mostly arose from findings of laboratory experiments and 

might thus not be adapted to field experiments. Second, empirical fire science is particularly limited by 

measurement accuracy (Sullivan 2009b) and relatively large –random- measurement errors can result in 

some noise in datasets, which might in turn hide or limit the significance of some factors and induce 

bias in the estimation of response functions to these factors (Fuller 1987), including LFMC. 

Measurement errors being - in theory - smaller in laboratory than in the field, this might also contribute 

to the difference in LFMC significance between these two scales. Finally, the sample size in fire 

experiments is generally limited, as most datasets contain between 10 and 40 fires (Alexander and Cruz 

2013a). It is generally acknowledged that sample size ranging between 10 and 40 is rather small to 

determine multifactorial effects (wind, fuel height and bulk density, DFMC, LFMC, fire width, etc.), 

because the selection of factors is based on tests of significance whose statistical power decreases with 

sample size (i.e. the ability to detect a specific effect decreases with sample size). 
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In this study, we aim at investigating separately whether each of these three assumptions might 

explain why the impact of LFMC is underestimated in previous field-based analyses. For that purpose, 

we carried out a series of statistical analyses on the dataset provided in Anderson et al. (2015), hereafter 

referred to as the FDS (Fire Data Set). We finally discuss the different sources of uncertainty, compare 

the different models that we obtained to existing relationships and provide a few recommendations 

regarding future research approaches. We would like to emphasize that the aim of this paper is not to 

propose a new model for the effect of LFMC on ROS, but rather to disentangle how different 

mechanisms could have led to LFMC underestimation in field studies through comprehensive statistical 

analyses. 

   

2. Material and methods 

Overview 

We first verified if the range of LFMC in the FDS was in agreement with LFMC conditions prevailing 

during the fire season in a Mediterranean region (Southern France).  

Second, we evaluated the influence of the range of LFMC on regression coefficients in ROS models, 

by fitting equations over the lower and upper sets of LFMC. For further analysis, we used Generalized 

Additive Models (Hastie and Tibshirani 1990) to determine the shape of the response function of ROS 

to LFMC thanks to relaxed assumptions regarding its shape when compared to the basic exponential or 

power decays. 

Third, we evaluated the ability to detect the effect of LFMC as a function of sample size. For that 

purpose, we computed the significance of LFMC coefficients arising from model fits performed on 

subsets of the FDS of decreasing size. 

Fourth, we used some numerical simulations to explore the sensitivity of the LFMC coefficient to 

random measurement errors. Measurement errors in explanatory variables are known to attenuate the 

observed mean response (e.g. the absolute value of the slope in linear regression) and to increase its 

variance (Fuller 1987). This analysis was based on the introduction of random measurement errors of 

specified magnitude in the dataset. 
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Datasets 

The fire dataset (FDS) 

The fire dataset (FDS) used in this study was built from the fire dataset collected by Anderson et al. 

(2015) and released in its Appendix A. Among the dataset in Anderson et al. (2015), 113 fires are 

documented with ROS (in m.min-1), 2-m wind speed (U, in km.h-1), vegetation height (H, in m), live and 

dead fuel moisture content (LFMC and DFMC, in %). Anderson et al. (2015) used a subsample of 79 

of these fires to develop a model referred to as Equation 2 in their study, the rest of the dataset being 

devoted to model validation. The form of this model is Eq. (1) below and the coefficients and statistics 

are shown in Table 1 (referred to as Anderson et al. 2015).  

RH database 

In order to provide an estimated range of interest for LFMC, we used the “Réseau Hydrique” database 

(RH) provided by the French National Forest organization (Duché et al. 2017) and extensively described 

in Martin-StPaul et al. (2018). In brief, this dataset reports FMC measurements on live shoot (green) 

samples of some of the dominant shrub species collected at different sites in the French Mediterranean 

area. Measurements have been performed once or twice a week during the fire season (from June to 

September) since 1996 (20,000 values). This dataset provides an opportunity to compare the typical 

distribution of LFMC during the fire season to the LFMC distribution observed in in fire experiments 

In the present work, we used this dataset and complementary phytovolume measurements to estimate 

the distribution of LFMC in shrub fuel strata during the fire season (3014 fuel strata LFMC estimates). 

The details of the method used to derive the fuel strata estimates is developed in Appendix A. To 

complete this analysis, we also extracted a subset of LFMC values corresponding to fuel strata from 

Bouche-Du-Rhone district (D13) where fire activity is particularly high in Southern France. 

 

Statistical analysis 

Fire ROS models 

In Anderson et al. (2015) the following model was fitted to a subset of the FDS, with an exponential 

function of LFMC, referred later as “Exp”: 
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 𝐸𝑥𝑝:           𝑅𝑂𝑆 = 𝑎𝑈𝑏𝑒−𝑐𝐷𝐹𝑀𝐶𝐻𝑑𝑒−𝑒𝐿𝐹𝑀𝐶  (1) 

Here, we also fitted the following “power” model, referred later as “Pow”, often used in empirical 

models: 

 𝑃𝑜𝑤:           𝑅𝑂𝑆 = 𝑎𝑈𝑏𝑒−𝑐𝐷𝐹𝑀𝐶𝐻𝑑𝐿𝐹𝑀𝐶𝑒  (2) 

These models were fitted on the whole FDS, as well as on subsets of the FDS to evaluate the sensitivity 

of LFMC coefficients to data range. In particular, we fitted the models to lower and upper sets of LFMC 

We also fitted model to partitions based on shrubland heights because Anderson et al. (2015) reported 

that existing correlations between LFMC and vegetation height might explain the little influence of 

LFMC in their models. These models were fitted using the nlinfit function of MATLAB. 

To overcome the limitation induced by the prescription of a priori functional forms such as (1) or (2), 

we also carried out non-linear parametric analysis based on Generalized Additive Models (GAM, Hastie 

and Tibshirani 1990). The model was: 

 𝐺𝐴𝑀:           𝑅𝑂𝑆 = 𝑎𝑈𝑏𝑒−𝑐𝐷𝐹𝑀𝐶𝐻𝑑𝑠(𝐿𝐹𝑀𝐶) (3) 

where s is the exponential of a spline function, which enables the response function of LFMC to 

exhibit any smooth functional form, with relaxed assumptions on the actual relationship, contrary to Eq. 

(1) and (2). This model was fitted using the gam function of package MGCV in the R Software and a 

log link (log(𝑅𝑂𝑆) ~ log(𝑎) + 𝑏 𝑙𝑜𝑔(𝑈) − 𝑐𝐷𝐹𝑀𝐶 + 𝑑𝑙𝑜𝑔(𝐻) + 𝑠(𝐿𝐹𝑀𝐶)). Note that the model 

formulation specifies the functional forms of U, DFMC and H as in Eq. 1 and 2, whereas the LFMC 

effect on ROS is a smooth function of which the form is to be estimated. It should be noticed that the 

differences between the GAM fit of Eq. 3 and the non-linear fit of Eq. 1 shown in the result section 

arose from the flexibility of the smoothing spline and not from differences associated with the method 

of fitting. Indeed, when replacing the smoothing function by a simple linear function (in this case the 

GAM was a simple Generalized Linear Model, GLM), we found a coefficient for LFMC (-0.00336) 

very similar to the one of the Exp model obtained with the non-linear fit of Eq. 1. With a GAM, 

smoothing functions can theoretically be applied to fit all variables and not only LFMC (DFMC, Height, 

etc.). However, the dataset was too small to do so, and the GAM behaved as a basic GLM, simply fitting 
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linear responses, as data were too sparse to estimate splines beyond their first –linear- order, which 

suggests that the size of the dataset might be a limitation for such a multifactorial analysis. 

It is important to acknowledge, that other variables, such as the fraction of live fuel and the fire length 

were not included in the models in order to maximize the sample size and might affect the model fits, 

although exploratory analyses suggest that these effects are limited. 

We relied on P-values to determine the coefficient significance and used Mean Absolute Percent Error 

(MAPE, in %) and Root Mean Square Error (RMSE) to compare model performance.  

 

Influence of sample size on the significance of LFMC coefficient 

To evaluate  sample size influence on the detection of LFMC effect, we fitted ROS models to fire subsets 

of various sizes (from 10 to 110), randomly selected in the FDS. The P-values were computed for each 

fit. Then, we evaluated, for different significance thresholds (10%, 5%, 1%), the frequency at which 

LFMC coefficients were significant for the different sample sizes. 

 

Evaluation of the impact of measurement error 

The aim of the following method was to explore the potential consequences of random measurements 

errors associated with explanatory (LFMC, wind, height and DFMC) and response (ROS) variables.  As 

the actual measurement error was unknown, we simply estimated the impact that measurement error 

might have been when determining LFMC coefficient in model fits. For that purpose, we specified 

random errors of given magnitude in the variables of the FDS, which was used as a representative of 

typical field datasets. 

First, we computed virtual reference values of rates of spread 𝑅𝑂𝑆𝑟𝑒𝑓, for each experiment of the 

FDS, assuming that i) all variables of the dataset were measured without error; ii) the spread rate was a 

deterministic function of these variables, through Eq. 4 (a typical representative of empirical models): 

 𝑅𝑂𝑆𝑟𝑒𝑓(𝛼) = 20𝑈𝑒−0.1𝐷𝐹𝑀𝐶𝐻0.5𝑒−𝛼𝑟𝑒𝑓𝐿𝐹𝑀𝐶  (4) 

 This approach was carried out for various values of the LFMC coefficient 𝛼𝑟𝑒𝑓 ∈

{0.003; 0.005; 0.01; 0.02}. 
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Then, we introduced random additive, independent measurement errors in input variables and 

reference ROS (with magnitude ranging between 0 and 30 %), before fitting the model on this virtual 

dataset. We then compared the fitted coefficient of LFMC (𝛼) to its actual value (𝛼𝑟𝑒𝑓), which provided 

a way to evaluate a posteriori how measurement error could have led to misestimating the regression 

coefficient in the initial FDS. The percentage of underestimation of the LFMC coefficient was defined 

as:  

𝑃(%) = 100
𝛼𝑟𝑒𝑓 − 𝛼

𝛼𝑟𝑒𝑓
 (5) 

In simple linear regression, random errors in the independent variable cause an attenuation bias on 

slope estimation (they always decrease the slope magnitude) in addition to variance inflation (Fuller 

1987). This bias can be estimated under appropriate assumptions on model and measurement errors (the 

attenuation factor is Var(x)/(Var(x)+Var(u)), where x is the true independent variable and u the 

measurement error on x). In the present case, because of the non linear functional form and existing 

correlations between independent variables, numerical experiments can be used to estimate the 

attenuation factor P. In order to reach consistent estimates of 𝑃 (%), 2000 altered versions of the FDS 

were generated for each measurement error percentage (from 0 to 30 %) and each 𝛼𝑟𝑒𝑓 to compute the 

mean value of estimated 𝛼. Several ways to generate measurement error (multiplicative, distinct 

percentage of measurement error for the different variables, etc.) and several values for (mean) 

coefficients of wind, DFMC and Height in (Eq. 4) in a plausible range, as well as the Pow function were 

tested, but had little influence on the results. For the sake of simplicity, we only present those obtained 

with the numerical values of Eq. (4), additive measurement error and constant measurement error 

percentage for all variables. 

 

3. Results 

Comparison of the LFMC distributions observed in fire experiments (FDS) and during the fire season 

in Southern France 

A comparison between the distributions of LFMC in the FDS and during the fire season in Southern 

France (RH) is shown in Fig. 1a. Much lower values of LFMC were observed in stratum LFMC from 
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RH (in green) than in the FDS (in blue), confirming that fire experiments are generally conducted in 

moister conditions than those prevailing in a Mediterranean fire season. In particular, values of LFMC 

higher than 150% were infrequent in RH data, contrary to the FDS, whereas dry conditions with 

LFMC<60% never occurred in the FDS. These differences were even more pronounced in the subset 

corresponding to the most fire prone district (D13 in red). This is consistent with the fact that DFMC is 

also most often moist in the FDS (88% of the fires exhibit DFMC larger than 10%). 

When splitting the FDS between low and tall shrublands (Fig. 1b, in cyan and purple), we observed 

that the discrepancy between FDS and RH distributions was more pronounced for tall shrublands (>1 m) 

than for low shrublands (<1 m). This also illustrates the correlations between LFMC and heights in the 

FDS that were pointed out by Anderson et al. (2015). In the next section, empirical models are fitted 

separately on each part of the FDS to limit the impact of confounding LFMC and heights on ROS.  

 

Exploring the influence of the functional form and data range in the FDS 

We evaluated how the estimated coefficients of LFMC varied according to the functional form of the 

LFMC effect and the subset of the FDS chosen for regression. The different subsets in the FDS were 

based on both LFMC and height thresholds suggested in Figure 1, i.e. for LFMC <150 % and height 

<1m. Figure 2 shows the effect of LFMC on ROS according to the different equations and subsets. For 

the sake of comparison, all effects were normalized to be equal to one for a LFMC of 100%. The values 

of corresponding regression coefficients and the respective metrics of model performance are indicated 

in Table 1. For reference, the black line with pluses is the equation provided by Anderson et al. (2015).  

The back line corresponds to our model fit of Eq. 1 over the FDS. The minor differences observed 

between these two curves might result from the subset of 79 fires used by Anderson et al. (2015). 

Although LFMC was highly significant (Table 1), both curves show a very limited effect of LFMC with 

an increase in ROS on the order of 10 % for the driest conditions, when compared to the 100% reference. 

Replacing the Exp by the Pow model led to slightly lower MAPE and RMSE (Table 1) and a steeper 

response in driest conditions (Fig. 2, blue line). 

Fitting models on drier conditions (LFMC lower than 150 %) and lower shrub strata (lower than 1 m, 

which in turns decrease the range of LFMC according to Fig. 1b), tended to increase the magnitude of 
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the response of ROS to LFMC, for both the Exp and Pow models (Table 1). Examples of such response 

functions (Pow models) are shown in Fig. 2 (blue lines with crosses and circles) and suggest that ROS 

can be up to 75 % higher in the driest conditions when compared to the 100% reference. We found that 

LFMC was not significant when exceeding 100% (not shown). This means that either LFMC has not 

impact in this range, or that the size of the corresponding subset is too small (53 fires) to exhibit a 

significant effect (Fig. 1b).  

The use of the GAM (Eq. 3) showed that the shape of the response function was different from the 

Exp and Pow models which are usually fitted (Fig. 2, green line, with confidence interval in dotted green 

lines). Indeed, the response function was very steep below 100 %, whereas no significant trend was 

identified above 100%. This was consistent with findings obtained with usual non-linear model fits on 

subsets (i.e. no strong effect below 150 % and insignificant effect above 100%). The flexibility of the 

smooth function led to non-monotonous effect, with slight increase of ROS with LFMC in the upper 

range, but not significant (variations remained within the confidence intervals), so that it would be 

relevant to force a constant effect for predictions above 100%.  

 

Influence of sample size on LFMC coefficient significance 

Figure 3 shows the frequency at which the LFMC coefficient was significant (based on P-values) in the 

random subsets of the FDS. As expected, this frequency increased with sample size and with P-Value 

threshold. However, these frequencies were relatively low (0.27-0.5) for typical fire sample sizes 

(between 20 and 40) and P-value of 0.05 (in red). They were even as low as 0.12-0.24 for the 0.01 

threshold (in green). It clearly suggests that the effect of LFMC on ROS cannot be detected with a typical 

fire dataset of 20 to 40 samples, even if such an effect is highly significant and strong on a larger dataset 

(Fig. 2). According to Figure 3, and for the range of conditions prevailing in the FDS, a sample size 

above ~100 fires would ensure the detection of a LFMC effect. 

 

Evaluating the impact of measurement error on LFMC coefficients 

Figure 4 shows the effect of measurement error on the LFMC coefficients fitted with the Exp model 

over the whole FDS. We found that the expectation of LFMC coefficients were increasingly 
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underestimated as measurement error increased, reaching to underestimation percentages P expected to 

range between 60 and 80 % for a measurement error of 30 %, although such an error was random. Such 

an underestimation of the LFMC coefficient was more pronounced for low values of 𝛼𝑟𝑒𝑓. This finding, 

however, should be taken with caution, since the percentage P was sensitive to the distribution of 

explanatory variables in the dataset sample. Indeed, we observed a stronger underestimation for high 

values of 𝛼𝑟𝑒𝑓 when applying the same method to a subset of the FDS (dry conditions for low shrub, 

Supplementary B). Overall, a 15%-measurement error led to an underestimation by roughly 30%, 

depending on the dataset (whole or subset) and the “true” value of the LFMC coefficient. 

4.     

Discussion  

The role of LFMC on ROS remains controversial in experimental fire sciences. This uncertainty 

has so far limited our understanding of the drivers of wildfire behavior and hampers our capacity to 

predict future fire regime changes. A major part of this debate arises from the fact that the effect of 

LFMC in field experiments is generally less important and significant than in laboratory experiments. 

In this study, we provide evidence that the discrepancy between field and laboratory experiment is only 

apparent and results from three limitations of the previous analyses on fire behavior at field scale (lack 

of flexibility of the functional forms fitted to relatively moist datasets, sample size, impact of 

measurement error). When including these sources of bias and error, our analyses revealed that the effect 

of LFMC in a large field dataset was much stronger than previously reported (especially when LFMC 

was smaller than 100%). In the following discussion, we examine these three factors and compare our 

estimations of the effect of LMFC on ROS with existing models. We then discuss the consequences of 

these findings in terms of operational predictions, especially in the context of the relative influence of 

LFMC and DFMC in these models. Finally, we propose some recommendations to improve future 

research in wildfire behavior. 

 

Factors affecting the evaluation of the impact of LFMC in simple ROS models 
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The lower impact of LFMC that has been observed in experimental field-based studies compared 

to either laboratory or landscape scales is the consequence of at least three interacting reasons. First, our 

analysis provided evidence that the functional forms of the equation generally used to model the effect 

of LFMC on ROS (Exponential or Power) in these models (which distinguish the effect of live and dead 

FMC) might not be suitable on the whole range of the dataset, since very different coefficients were 

obtained when the dataset was restricted to its driest –or moister- part. This finding is confirmed by the 

use of a GAM model, which shows that the LFMC effect is strong in the lower range of LFMC data, 

but negligible above it. This illustrates the importance of the range of variables in experiments and of 

the type of statistical analysis, which is reinforced by the fact that experimental fires are often carried 

out in conditions different from those prevailing during the fire season (here, relatively moist LFMC 

and DFMC conditions). Indeed, the sensitivity of the different basic models (here Power) to the range 

of values used is shown to be even stronger when extrapolated out of the range of data used for model 

development (Fig. 5, which is very similar to Fig. 2, but in a drier range, for a selection of models). This 

point contradicts the assumption of Cruz et al. (2017), who suggested that some empirical models (based 

on Exponential or Power functions) were likely to be valid for far drier conditions than those involved 

in the model development. A GAM model is more adapted than basic non linear fits or GLM to such an 

extrapolation (i.e. prediction out of the range of input variables), as data closest to the extrapolation 

range (here 67-100%) are used for the estimation of both the trend and the prediction interval (Figure 5, 

in green and dotted green), whereas the other approaches give the same weight to dry and moist data. 

Second, our findings clearly demonstrated that most field datasets are too small to detect any LFMC 

effect, as they often ranged between 9 and 40 (Alexander and Cruz 2013). One should note, however, 

the noticeable exception of Catchpole et al. (1998), which was based on 133 experimental fires and 

nevertheless did not report any significant effect of LFMC. Other reasons such as specific vegetation 

(sedge grass), less reliable or incomplete data (removed in Anderson et al. 2015), confounding factors, 

unsuitable range of data or functional form might explain this finding, which to date, remains 

unexplained and would deserve future analysis. 

Third, we found that the measurement error (arising from random errors affecting each individual 

measurement) significantly contributed to the underestimation of LFMC effect, a 15%-measurement 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 October 2018                   doi:10.20944/preprints201810.0459.v1

http://dx.doi.org/10.20944/preprints201810.0459.v1


error leading to an underestimation by roughly 30% of the estimated effect. The measurement error of 

wind has been shown to be large in canopy fires, because of the size and duration of turbulent coherent 

structures, reaching up to 30%, depending on vegetation height, duration and extent of the experimental 

burns, wind speed or the number and height of sensors (Sullivan and Knight 2001; Pimont et al. 2017). 

The wind measurement error in shrubland fires has not been studied yet, but it could be important, 

especially when measured close to the ground level (e.g. 2-m height). LFMC measurements are also 

subject to random errors related to the time, location, species sampled, definition of the fuel strata, size 

of vegetation element, sampling design and drying process (Sullivan 2009b; Matthews 2010). Such 

measurement errors are seldom quantified, despite existing methodologies (Countryman and Dean 

1979), so that the magnitude and exact consequences of these errors on statistical models of ROS remain 

largely unknown.  

 

Comparison with existing LFMC models 

We compared the response of ROS to LFMC in shrubland fire experiments obtained when including the 

different sources of uncertainties and biases mentioned above with other response function derived from 

laboratory experiments or fire behavior models in Figure 6. Our estimations of the impact of LFMC on 

ROS were represented by the purple curve with circle, which combined the 30% underestimation arising 

from measurement error and the fit obtained on the subset corresponding to low and dry shrublands. 

The green curve which was obtained with GAM models fitted on the whole dataset assuming not a priori 

functional form of the LFMC-ROS relationship, and is therefore supposed to be as close as possible to 

the actual LFMC effect in the FDS. Other models are from Anderson et al. (2015), from the laboratory 

experiments of Rossa et al. (2016) who fitted models function of LFMC, and from the laboratory 

experiments of Marino et al. (2012) and Rossa and Fernandes (2017a), who used models of weighted 

LFMC (i.e. dead and live FMC), and from the Van Wagner model for LFMC effect (1989). Overall, the 

reanalyzes led to an impact of LFMC as strong as in Van Wagner (1989) or Marino et al. (2012) for the 

driest conditions, whereas the original analyses suggested a much smaller effect (Anderson et al. 2015). 

This comparison confirms the importance of the range of variables in experiments, since our results 
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(model fits on dry subset) suggests that the discrepancies between field and laboratory would have been 

limited if field experimental fires would have been conducted in drier conditions (67-150%). 

Our findings about the strong sensitivity of fire behavior to LFMC below 100% in shrublands are 

also consistent with empirical studies that examined the relationships between LFMC and fire activity 

at landscape scales (Chuvieco et al. 2009; Dennison and Moritz 2009; Nolan et al. 2016; Pimont et al. 

2018), each of which reported a clear threshold of fuel moisture content in shrublands associated to large 

burnt areas. Although this threshold is currently debated (see Pimont et al. 2018) and varies from around 

80 % to 110 % depending on analytical methodologies and vegetation types, increased burnt areas might 

partly result from shrubland fires spreading faster, not only because of lower DFMC but also because 

of lower LFMC. This suggests that the comparison of the drivers of wildfire behavior should be 

encouraged between different scales. 

 

Relative role of LFMC and DFMC in models 

The most straightforward approach for modelling the influence of fuel moisture in fire behavior 

(here, ROS) does not distinguish the influence of live and dead fuels, based on mass-weighted averages 

(e.g. Rothermel 1972). The combined response of ROS to both LFMC and DFMC is potentially more 

complex (Finney et al. 2013), but some laboratory experiments suggest no differential role between 

LFMC and DFMC (Marino et al. 2012; Rossa and Fernandes 2017a; Rossa and Fernandes 2018), 

supporting the hypothesis that the weighted FMC would be the actual explanatory factor of ROS. The 

objective of the present study was not to investigate this controversial question and did not include the 

fraction of dead mass as a variable (mostly to maximize dataset size, as this variable was not available 

for all fires in Anderson et al. 2015). However, if the above “weighted FMC” hypothesis was confirmed, 

it is interesting to notice that LFMC should also be detected as a significant factor even in moist 

conditions, which in fact was not observed with the FDS. Although this absence of significance in moist 

conditions might result from particular correlation with the fraction of dead mass, we suggest another 

mechanism. Indeed, in the moistest conditions, we can assume that fire spread is mostly driven by dead 

fuels. In this case, it is not surprising that ROS is little affected by the FMC of the live fuels –contrary 

to what would be expected from the “weighted FMC” hypothesis-, which can eventually passively burn, 
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so that the role of DFMC becomes dominant. More generally, there are still open research needs on the 

interactions between ROS, LFMC and other factors such as height, bulk density, wind (Sullivan 2009b). 

It has been suggested that predictions based on the sole use of DFMC were satisfactory for 

operational purposes for two reasons: i)  ROS is only marginally affected by LFMC, because of the high 

values of heat fluxes in the field (Anderson et al. 2015); ii) even if such an effect exists, it is not 

necessary to account for it because of temporal correlation between monthly DFMC and LFMC (Rossa 

and Fernandes 2017b). While these assumptions are probably valid for a first approach, it should be 

considered with caution when applying in more specific contexts. First, our study reveals that ROS is 

highly sensitive to LFMC in the range of values (60-100%) corresponding to LFMC prevailing during 

actual fire seasons (here Southern France). This strongly suggests that monitoring LFMC during the fire 

season, as currently done by the French agencies is relevant and that incorporating LFMC in operational 

models would be useful. Second, the links between LFMC, DFMC and ROS probably require 

clarifications, at least when live fuel is very moist, as suggested above. Third, LFMC and DFMC are 

affected by different mechanisms (Jolly et al. 2018), i.e. DFMC physically adjusts to atmospheric 

conditions, responding quickly to weather changes, while LFMC should vary smoothly thanks to the 

plant regulation of water use; hence the daily relationship between LFMC and DFMC records could be 

more or less noisy, depending on weather patterns of the season, so that predictions based on solely 

DFMC could be sometimes spurious. Fourth, the plant regulation of water use varies among species, 

leading to different responses of LFMC to climate and site (Viegas et al. 2001; Martin StPaul et al. 

2018; Ruffault et al. 2018b), while the response of DFMC to a weather series should be unique. Finally, 

the increased water deficit following a drought episode can trigger plant desiccation and organ mortality, 

leading to abrupt drop in LFMC, while DFMC exhibits marginal variations.  

 

Towards a variety of approaches for a better understanding of drought effect on fire behavior 

These different research needs can be addressed by combining a variety of methods and study scales 

to overcome the specific weaknesses of each individual approach. Laboratory-based experiments permit 

to get high quality data with full factorial experimental design and small measurement error, but suffer 

from conditions that differ from actual fire conditions in terms of both size and intensity. Field 
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experiments are closer to actual fire conditions but experimental studies do not generally span across 

the most severe conditions of spread (including low LFMC) for economic and safety reasons (Chandler 

et al. 1983), as confirmed by our comparison between the distribution of LFMC in the FDS and in the 

RH. Also, they are limited in sample size, present correlations among variables and can exhibit 

significant measurement errors, as well as variations in factors that are poorly understood (e.g. strata 

cover fraction). Improved knowledge can be obtained by the integration of innovative analyses of 

experimental datasets, such as the ones presented in our study. We think that the use of smooth functions 

in GAM should be generalized, as suggested in Hastie and Tibshirani (1990), even if the small sample 

size limits its application to all the factors, as reported above, as it increases the accuracy of estimated 

response functions and their eventual extrapolations. 

Physically-based modelling can also provide some insights, especially for models which explicitly 

account for the mixing of live and dead fuel (such as WFDS, Mell et al. 2007) and could be used to 

investigate in depth the relationship between ROS, DFMC and LFMC. More generally, these models 

might help to disentangle the complex interaction between variables (e.g. FMC and Height), thanks to 

full factorial numerical experiments containing no measurement error. To date, the sensitivity to LFMC 

has not been much addressed by these models (with the exception of Marino et al. 2012). The question 

of their evaluation/validation, however, is not straightforward, as pointed out in Alexander and Cruz 

(2013b).  

 

Conclusion  

By reanalyzing an existing dataset, our study shows that the fire rate of spread might be more sensitive 

than expected to live fuel moisture content, especially in dry conditions (<100%). From innovative 

statistical methods, we demonstrated that the previous underestimation of its effects from experiments 

in shrublands could arise from some limitations in the statistical approaches applied to experiments 

conduced in relatively moist conditions, small size of datasets and random errors in measurements. 

These findings reaffirm the critical need for a better understanding of both LFMC dynamics and LFMC 

impact on fire spread, in order to improve our capacity to rate fire danger more accurately and to 

anticipate the impact of climate change on fire activity. 
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Figures 

 

(a)      (b) 

Fig. 1. Comparison between the distributions of LFMC data in the fire dataset (FDS) from Anderson et al. (2015) 

and in from LFMC of the shrub stratum estimated from LFMC of the “Réseau hydrique” dataset (RH) during the 

fire season in Mediterranean France:  a) FDS in blue, RH for all south-east of France in green, RH for D13 

(Bouche-du-Rhone, one of the most fire prone area) in red; b) Low shrublands of the FDS (H<1 m) in cyan; Tall 

shrubland of the FDS (H>1 m); RH for all south-east of France in green. 
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Fig. 2. Sensitivity of rate of spread (ROS) to Live Fuel Moisture Content (LFMC) according to various models 

fitted to the entire and different subsets of the Fire Data Set (Anderson et al. 2015). Note that ROS were normalized 

so that ROS was set to 1 at LFMC=100%. In black, the equation obtained with the Exponential model for the 

subset of 79 fires as in Anderson et al. (2015) is here for reference. In black with pluses is the same exponential 

model fitted on the whole dataset (Obviously almost identical to Anderson et al. 2015). In blue are the power 

models fitted to the whole dataset, dry subset (blue crosses) and dry and low subset (blue circles). In green is the 

GAM model fitted on the whole dataset with its confidence interval in dotted green. 
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Fig. 3. Frequency at which the LFMC coefficient is significant according to three different P-value thresholds (in 

blue, green and red) in subsets of the FDS with size ranging between 10 and 110. 
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Fig. 4. Underestimation of the LFMC coefficient (in % of coefficient value) arising from measurement errors (in 

%), evaluated over the FDS. The four lines correspond to different coefficient in the exponential model (alpha 

ranging between 0.003 and 0.02). 
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Fig. 5. Figure similar to Fig. 2, but showing the extrapolation of some statistical models in a drier range of 

LFMC. In blue are the power models fitted to the whole dataset, dry subset (blue crosses) and dry and low subset 

(blue circles). In green is the GAM model fitted on the whole dataset with its confidence interval in dotted green. 

 

Fig. 6. Relative impact of LFMC on ROS depending on the functional form and subset (similar to Fig. 3) and 

when accounting for measurement error (+30% in magenta). Anderson et al. (2015) is here for reference. Rossa 
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et al. (2016) corresponds to laboratory experiments with live fuels (in black) and for broad leaf shrubs (dashed 

black). Marino et al. (2012) and Rossa and Fernandes (2017) are also derived from laboratory-based experiments 

but are function of weighted FMC (combination of live and dead fuel). 
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Tables 

Table 1. Coefficients and statistics for the different models fitted to the Fire Data Set (Anderson et al. 2015) and 

various subsets. 

Equation FDS or FDS 

Subset 

Intercept Wind DFMC H LFMC n MAPE 

(%) 

RMSE 

Exp 

(Eq. 1) 

FDS 5.50 

(***) 

0.920 

(***) 

0.0581 

(***) 

0.497 

(***) 

-0.00339 

(***) 

113 34.3 5.76 

LFMC<150% 11.1 

(**) 

0.765 

(***) 

0.0547 

(***) 

0.496 

(***) 

-0.00758 

(**) 

98 34.6 5.47 

LMC<150% 

H<1m 

24.0 

(*) 

0.799 

(***) 

0.0967 

(***) 

 -0.0144 

(***) 

66 38.5 5.09 

Pow 

(Eq. 2) 

FDS 35.2 

(0.13) 

0.915 

(***) 

0.0574 

(***) 

0.515 

(***) 

-0.481 

(***) 

113 33.9 5.73 

LFMC<150% 182 

(0.42) 

0.766 

(***) 

0.0532 

(***) 

0.504 

(***) 

-0.782 

(***) 

98 34.6 5.45 

LMC<150% 

H<1m 

2690 

(0.58) 

0.804 

(***) 

0.0948 

(***) 

 -1.35 

(***) 

66 38.0 5.07 

GAM 

(Eq. 3) 

FDS 4.02 

(***) 

0.799 

(***) 

0.0441 

(***) 

0.565 

(***) 

Spline 

(***) 

113 34.0 5.56 

Anderson et 

al. 2015 

79 fires 6.42 0.994 0.0761 0.372 0.00313 79 38 6.7 

Pvalue (*) < 0.05, (**) < 0.01, (***) < 0.005 

NB: When strata height was limited to 1m, the height parameter was not significant and was thus removed in 

nlinfit. 
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Supplementary material: 

Appendix A. Fuel stratum LFMC estimates 

The RH dataset is an operational network to survey FMC of live shoots of a selection of species in 

Southern France during the fire season (Martin-St Paul et al. 2018). In experiments such as those 

reported in Anderson et al. (2015), LFMC does not refer to the LFMC of some species, as in the RH 

network, but to the moisture content of the live elements of the whole shrub stratum, which can be 

obtained by weighting the LFMC of the different species (as measured in the RH network) with the bulk 

densities (kg m-3) of each species in the stratum. In 2016 and 2017, complementary measurements were 

performed on the RH sites, including vegetation properties. The phytovolumes of the different species 

were estimated from heights and cover measurements (segmented by classes of heights [0 0.5] m, [0.5-

1] m and [1-2] m), as follows: 

 𝑉(𝑚3ℎ𝑎−1) = 100(ℎ0−0.5𝐶0−0.5 + ℎ0.5−1𝐶0.5−1 + ℎ1−2𝐶1−2) (A1) 

where h and C are respectively the actual heights (in m) and the cover fractions (in %) of the different 

strata of a given species present in the fuel complex. The 100 constant arises from the fact that cover 

fraction is in % (factor 0.01) and than a hectare represents 10000 m2. 

For a fuel shrubland with n species, the LFMC of the stratum can be estimated as: 

 
𝐿𝐹𝑀𝐶𝑠𝑡𝑟𝑎𝑡𝑢𝑚 ≈

∑ 𝑉𝑖𝐿𝐹𝑀𝐶𝑖𝑖=1,𝑛

∑ 𝑉𝑖𝑖=1,𝑛
 (A2) 

where 𝐿𝐹𝑀𝐶𝑖 and 𝐿𝐹𝑀𝐶𝑖 are respectivey the phytovolume and LFMC of species i. This formulation 

neglects the impact of variations in bulk densities of the different species, but this is expected to be of 

limited impact in such a weighted average, regarding the range of variation of species bulk densities. 

We will be able to improve this estimation in the future, thanks to ongoing analysis on individual shrubs, 

which have been sampled in the field for bulk density estimation, but the estimates are yet not available. 

Another limitation of the the RH dataset is that it only reports two of the dominant shrub species in each 

site, so that not all 𝐿𝐹𝑀𝐶𝑖 values are available. For the present analysis, we selected the sites in which 

the phytovolume of the two sample species (1 and 2) represented more than 80% of the total 

phytovolume of the strata (10 sites). The LFMC of the stratum for these sites were estimated by: 
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𝐿𝐹𝑀𝐶𝑠𝑡𝑟𝑎𝑡𝑎 ≈

𝑉1𝐿𝐹𝑀𝐶1 + 𝑉2𝐿𝐹𝑀𝐶2

𝑉1 + 𝑉2
 (A3) 

 

 

This process led to 3014 fuel-stratum-LFMC estimates sampled between 1996 and 2016 on 10 sites of 

the French Mediterranean basin, on of them being located in the Bouche-Du-Rhone district (D13) where 

the fire activity is particularly high. The accuracy of these values is limited by the above assumptions, 

but sufficient for a coarse evaluation of the range of LFMC data observed during actual fire season, for 

comparison to fire experiments. 
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Fig. B. Figure similar to Fig. 4, but assessed on a subset. Underestimation of the LFMC coefficient (in % of 

coefficient value) arising from measurement errors (in %), evaluated subset corresponding to low and dry shrubs 

(H<1 m, LFMC <150 %). The four lines correspond to different coefficient in the exponential model (alpha ranging 

between 0.003 and 0.02). The introduction of measurement error in data leads to a systematic and strong 

underestimation of the estimated effect of LFMC on ROS, but were slightly different from Fig. 4. 
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