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Abstract:  Numerical optimization of photonic devices is often limited
by a large design space: the finite-differences gradient method requires as
many electric field computations as there are design parameters. Adjoint-
based optimization can deliver the same gradients with only two electric
field computations. Here, we derive the relevant adjoint formalism and
illustrate its application for a waveguide slab, and for the design of optical
sub-wavelength gratings.

© 2014 Optical Society of America

OCIS codes: (050.0050) Diffraction and gratings; (220.4830) Systems design; (230.0230) Op-
tical devices; (310.6805) Theory and design; (350.4238) Nanophotonics and photonic crystals.

References and links

1

2.

3.

. J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations (Springer, 1971).

R. Becker and R. Rannacher, “An optimal control approach to error control and mesh adaption in finite element
methods,” Acta Numerica 10, 1-102 (2001).

K. Eriksson, D. Estep, P. Hansbo, and C. Johnson, “Introduction to adaptive methods for differential equations,”
Acta Numerica 4, 105-158 (1995).

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal representations by error propagation,”
Parallel Data Processing 1, 318-362 (1986).

J. Reuther, A. Jameson, J. J. Alonso, M. J. Remlinger, and D. Saunders, “Constrained multipoint aerodynamic
shape optimization using an adjoint formulation and parallel computers, part 1,” Journal of Aircraft 36(1), 51-60
(1999).

J. Reuther, A. Jameson, J. J. Alonso, M. J. Remlinger, and D. Saunders, “Constrained multipoint aerodynamic
shape optimization using an adjoint formulation and parallel computers, part 2,” Journal of Aircraft 36(1), 61-74
(1999).

Y. seek Chung, Changyul-Cheon, I.-H. Park, and S.-Y. Hahn, “Optimal shape design of microwave device using
fdtd and design sensitivity analysis,” Microwave Theory and Techniques, IEEE Transactions on 48, 2289-2296
(2000).

N. Georgieva, S. Glavic, M. Bakr, and J. Bandler, “Feasible adjoint sensitivity technique for em design optimiza-
tion,” Microwave Theory and Techniques, IEEE Transactions on 50, 2751-2758 (2002).

N. K. Nikolova, H. W. Tam, and M. H. Bakr, “Sensitivity analysis with the fdtd method on structured grids,”
Microwave Theory and Techniques, IEEE Transactions on 52, 1207-1216 (2004).

N. K. Nikolova, Y. Li, Y. Li, and M. H. Bakr, “Sensitivity analysis of scattering parameters with electromagnetic
time-domain simulators,” Microwave Theory and Techniques, IEEE Transactions on 54, 1598-1610 (2006).

#208553 - $15.00 USD Received 31 Mar 2014; revised 1 May 2014; accepted 12 May 2014; published 21 May 2014
(C) 2014 OSA 2 June 2014 | Vol. 22, No. 11 | DOI:10.1364/0OE.22.012971 | OPTICS EXPRESS 12971



11. G. Veronis, R. W. Dutton, and S. Fan, “Method for sensitivity analysis of photonic crystal devices,” Optics Letters
29, 2288-2290 (2004).

12. Y. Jiao, S. Fan, and D. A. B. Miller, “Photonic crystal device sensitivity analysis with wannierbasis gradients,”
Optics Letters 30, 302-304 (2005).

13. P. Seliger, M. Mahvash, C. Wang, and A. F. J. Levi, “Optimization of aperiodic dielectric structures,” Journal of
Applied Physics 100, 034310 (2006).

14. C. M. Lalau-Keraly, S. Bhargava, O. D. Miller, and E. Yablonovitch, “Adjoint shape optimization applied to
electromagnetic design,” Optics Express 21, 21693-21701 (2013).

15. O. D. Miller, C. W. Hsu, M. T. H. Reid, W. Qiu, B. G. DeLacy, J. D. Joannopoulos, M. Soljaci¢, and S. G.
Johnson, “Fundamental limits to extinction by metallic nanoparticles,” Physical Review Letters 112, 123903
(2014).

16. D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing
abilities,” Nature Photonics 4, 466-470 (2010).

17. V. Liu, D. Miller, and S. Fan, “Highly tailored computational electromagnetics methods for nanophotonic design
and discovery,” Proceedings of the IEEE 101, 484-493 (2013).

18. J. Lu and Vuckovié, “Inverse design of nanophotonic structures using complementary convex optimization,”
Optics Express 18, 3793-3804 (2010).

19. R. Courant, K. Friedrichs, and H. Lewy, “Uber die particllen Differenzengleichungen der mathematischen
Physik,” Mathematische Annalen 100, 32-74 (1928).

20. K. Yee, “Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic me-
dia,” Antennas and Propagation, IEEE Transactions on 14, 302-307 (1966).

21. D. Taillaert, W. Bogaerts, P. Bienstman, T. Krauss, P. van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and
R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and
single-mode fibers,” Quantum Electronics, IEEE Journal of 38, 949-955 (2002).

22. G. Roelkens, D. V. Thourhout, and R. Baets, “High efficiency silicon-on-insulator grating coupler based on a
poly-silicon overlay,” Optics Express 14, 11622-11630 (2006).

23. A.F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-
software package for electromagnetic simulations by the FDTD method,” Computer Physics Communications
181, 687-702 (2010).

1. Introduction

When designing optical structures via numerical simulations, we are often lead to compute the
gradient of some target function with respect to our design variables: we may, for example,
want to assess the sensitivity of our structure to manufacturing imprecisions, or optimize the
structure’s performance with respect to a given metric. Computing the gradient of a function
usually requires two optical simulations per design parameter. This is fine for simple systems,
but intractable for many optical systems of interest (e.g. diffractive elements or photonics cir-
cuits) which can contain millions of independent parameters.

Fortunately, if the target function is specified in advance, it is possible to exploit the math-
ematical structure of a large class of optical simulations to compute the multivariate gradient
using only two simulations, no matter how many parameters are present. Next to the primal
solve, one has to solve the adjoint problem once. The adjoint solution acts as a kind of influ-
ence function regarding the respective target function and avoids to solve the primal problem for
each parameter variation. This is the principle idea behind adjoint-based optimization and sen-
sitivity analysis. This approach is well-known to several fields of application as control theory,
mesh adaptation, error estimation or propagation [1—4] and has been used very successfully for
many years in performing aerodynamic shape optimizations [5,6]. Later, it was used by electri-
cal engineers in the microwave regime [7—10]. In the optical arena, the approach has been used
by only a few groups [11-15].

The potential of this approach to optimize complex optical structures with many design pa-
rameters can hardly be overstated. For example, optimizing optical lens gratings [16] typically
requires supercomputers or very large clusters. Countless runs with slightly different parameter
settings are performed to find an appropriate set of design parameters. Being able to reduce the
required number of these computations significantly relaxes the computational requirements.
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Thus, instead of probing a huge number of parameter settings, we can probe only a few and
then perform efficient local optimization in the vicinity of the best settings. Adjoint-based opti-
mization is an elegant method to compute the gradients that are needed for local optimization.
This paper shows how to reduce the computational complexity of finding the gradient tremen-
dously: from approximately as many field computations as there are design parameters (which
is often in the hundreds or thousands) to two, independently of the number of design param-
eters. This makes it possible to optimize rather complex photonic systems with respect to an
arbitrary number of parameters on a single desktop or laptop computer.

It is worth noticing that there are several different approaches to optimizing photonic struc-
tures and devices [17]. One particularly elegant approach is inverse design [18], where the
structure is optimized to fit a particular field. In any case, when an optimization approach uses
local gradients, adjoints may be used to efficiently compute them.

This paper derives the relevant equations for adjoint-based optimization and sensitivity anal-
ysis for optical systems. In particular, we present a formalism that is well suited for sensitivity
analysis and optimization using a Maxwell solver. Therefore, this paper provides a detailed
tutorial on the adjoint method used to solve electromagnetic problems. We provide a simple
example of a slab waveguide where the adjoint method can be compared to the exact analytic
model. We also show that the adjoint method can be effectively applied to the optimization of
a grating coupler — a task where the adjoint method has not been applied before.

2. Problem description

In all generality, adjoint-based optimization is used to locally optimize a target function 7' (x, p)
which depends on the physical state of the system x, as well as a number of design parameters
p- For optical gratings, for example, the physical state of the system can be described conve-
niently by the electric field (or sometimes just a single component thereof) at each point of
the computational grid. The vector of design parameters p contains, for example, geometric
parameters describing the layout of our grating. In order to determine the state of our system
x(p), we solve a given vector equation R(x,p) = 0, such as Maxwell’s equations.

For our optimization, we need to know how each of the design parameters affects the value
of our target function: we need to compute L For each design parameter py, this derivative is

aT dx; BT dT dx JT

dr
i Loxdm op oxdm T ap

(D

provided that the design parameters are mutually independent. What makes the evaluation of the
above equation computationally costly is the the term d%. In fact, it is important to understand
that the dependency of our solution x on the design parameters p is implicit via the condition
that R(x,p) = 0. Otherwise, we would be able to analytically compute the relevant derivatives
with respect to our design parameters and our optimization problem would be trivial.

Computlng v1a the finite-differences approximation is numerically very inefficient:

deI

dipk ~ TPk (X(pApk) _X(p>) ) (2)

where Apy is a small variation on the k-th design variable, and p,, denotes the vector of design
parameters where Ap; was added to the k-th component only. As we can see from the above
finite-difference equation, this approach demands for one reference computation of R(x,p) =0
to compute X(p), and then one additional R(x,pap,) = 0 to find the necessary x(pa, ) for each
component of the gradient. To compute the full gradient with respect to n design variables, we
would therefore have to solve the vector equation R = 0 a total of n+ 1 times. For costly R and

#208553 - $15.00 USD Received 31 Mar 2014; revised 1 May 2014; accepted 12 May 2014; published 21 May 2014
(C) 2014 OSA 2 June 2014 | Vol. 22, No. 11 | DOI:10.1364/0OE.22.012971 | OPTICS EXPRESS 12973



large numbers of design parameters, this often exceeds the available resources of computational
power and time.

As we show below, it is often possible to exploit the mathematical structure of the local
optimization and sensitivity analysis problem: the adjoint method allows us to compute the
relevant gradient ‘é—g performing only two non-trivial simulations. No matter how many design
variables we are dealing with.

3. Derivation of adjoint approach

Using the adjoint method, we are able to determine ?j—r using only one solution of R(x,p) =0,

and one solution of the adjoint equation. As long as the latter is is of similar numerical complex-
ity as the direct equation R, the adjoint-based optimization is likely to reduce the computational
cost of %, which we are interested in.

Our starting point is the fact that, for any set of design parameters p, and any corresponding
state x, we know that the governing vector equation R vanishes,

R(x,p) =0. 3)

Since this condition has to hold for any set of parameters p with corresponding x, its Taylor
expansion also has to vanish. Intuitively speaking, in the solution space, where we only consider
design parameters and their corresponding states, the derivative of the state function R with
respect to a design parameter py also vanishes,

dR _JRdx IR _

X 4)
dpr  dxdpe  Ipx
We can now multiply % on the left by any complex vector v and subtract the product from 5177;
without changing the latter gradient’s value
dT  JT dx JT . /JR dx JR
— =tV [ ==+ = ]. 5)
dpr  Ixdpr  Ipx dx dpe  Ipk
By regrouping the terms, we find
dr oT +OR dT  .JR) dx
— =V =— — -V =— ] —. (6)
dpk apk ka ox Jx dpk

This expression is the key to the adjoint method: if we are able to find a v such that the pre-
factor of (;%‘k vanishes, we do not have to perform the expensive n+ 1 solutions of our state
function to find the gradient ‘é—g. In fact, we will simply have to solve R = 0 once to find our
x(p). Then, we will solve our adjoint equation

oT +JR

I

ox ox’
to find a convenient v. And these two computations then straightforwardly allow us to determine
the derivative of our target function with respect to our design parameters,

)

dT aT + JdR
— =V —. ®)
dpr  dpx Ipi
To illustrate the use of this powerful approach, we will now show how to apply the adjoint
method in two concrete situations and derive the relevant equations for optical systems.
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4. Optical systems

In this section, we derive the relevant equations for adjoint-based optimization and sensitiv-
ity analysis in optical systems, starting the same way as Nikolova et al. [9] did for the mi-
crowave regime. For mathematical simplicity, we consider the dispersion-free, and linear case.
Nonetheless, adjoint-based optimization can also be used for non-uniform, anisotropic media.
Maxwell’s equations are

oD
VXH:§+JG+J
JB
—VXE:§7 (9)

where J denotes the density of current sources. The constitutive relations are

B=uH
D=¢E
Jo =oE, (10)

where 1 denotes the permeability tensor, € the permittivity tensor, and o the specific conduc-
tivity tensor. These equations can be combined into
’E _JE  dJ
Vxpu 'VXE+e=5 +0—— = ——.
H or? ot ot
In our optical gratings, the specific conductivity tensor ¢ vanishes. Furthermore, we write
our electric field (and source) as E(¢) = Re(Ee'?"),where E € C. Note that the permittivity €
describes the layout of our optical grating and therefore directly depends on our design param-
eters. We rewrite Eq (11) as

Y

R(E,p) = #E—iw] =0, (12)

where we introduced
ME =V x 1~ 'VxE—w’cE. (13)

To compute an electric field E that satisfies Eq. (11), we can use any convenient Maxwell solver,
such as any FDTD [19, 20] solver. The simulation returns the complex electric field amplitude
at each point of the computational grid.

Our target function 7 is the electric field strength in a specific region Q

_ 1 _ e
T(E,p) = N/dQ|E|2 =EJE, (14)
Q

where Eg = E within the region Q and zero outside, and N is some (irrelevant) normalization
constant introduced for mathematical rigor, only. With this notation, we also introduce the addi-
tional hypothesis that E varies predominantly in norm (rather than in phase), as we vary p. This
will allow us to approximate the derivative of our target function with respect to the electric
field as E{.

At this point, we are able to derive the adjoint equation for this problem. First, note that for
isotropic dielectric media where ¢” = ¢ and u" = u we have .#" = .#. Second, we use E
computed as the numerical solution of Eq. (12) in Eq. (7) and find ES = ¥'.# . This equation
will allow us to compute the adjoint field v. Third, we rewrite this equation in a way that shows
its correspondence to the direct problem Eq. (12) and conclude that

(1N
MMV —i0 (ino) =0. (15)
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Both the direct problem Eq. (12) and the adjoint problem Eq. (15) can be simulated using the
same Maxwell solver. In fact, we see that the adjoint field v can be interpreted as an electric field
that was created by a particular set of sources. The adjoint sources term, %Eo, is proportional
to the field of the direct solution, wherever we are optimizing the field, and zero everywhere
else.

Computing the relevant gradient Eq. (8) is computationally trivial once we have the solutions
of the direct problem, E, and of the adjoint problem, ¥. Our target function (14) does not depend
on the design parameters p. Hence, IT _ (). Also, the only element of the governing vector

Ipr
equation (12) that depends on the design parameters is the spatially varying dielectric constant

€. Therefore, 575( = %7//]{ E = g—piE and the gradient Eq. (8) is simply
dl :fv'l'ﬁ'. (16)
dpi Ipk

Note that this expression includes simple vector-matrix multiplication and finding the derivative
of our spatially varying dielectric constant € with respect to each of the design parameters py.
However, we certainly know the current dielectric layout of the device we are trying to optimize.
Hence, we can compute ngk either analytically, or by using computationally cheap numerical
methods. This shows that we can ultimately compute the derivative of our target function with
respect to our design parameters, %, with only two non-trivial computations: to find the direct

solution E, and the adjoint solution V.

5. Example 1: waveguide slab

Consider the text-book example of a waveguide slab of thickness 4, described by the cover
material index 7., the guiding film index n ¢, and the substrate index n,. We would like to know
what modes are supported by this waveguide slab for a given wavelength A. The vacuum wave
vector is kg = 27” The characteristic equation for transverse electric (TE) modes is

Yet+ %
7 (1-)

where Ky = \ /kjn7 — B2 is the transverse wave vector, % = /B2 — kgn? and 1 = |/ B% — kgn?

tan(hky) = 17

are the attenuation coefficients of cover and substrate, respectively, which all depend on the
longitudinal wave vector 3. Therefore, solving Eq. (17) means finding one or all 8 for which
this equation holds.

If we were to ask how a specific value of B changes as we modify, for example, the height
of the slab, we would usually have to solve Eq. (17) for different values of 4. Worse, even, if
we were to modify the indices n., ns, and ny, too, we would have to solve that same equation
over and over again to derive how 3 depends on them. Nowadays computers can solve this
transcendental equation really easily, but for the sake of explaining the adjoint method, pretend
that this is an arduous task.

To use the adjoint method, we rewrite Eq. (17) as

Yo+ %

knowing that the value of R(f, p) depends on the longitudinal wave vector, as well as a number
of design parameters p = (h,n.,ns,ny)", and vanishes for all solutions f3(p). For the sake of

R =tan(hxy) — (18)
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simplicity, we shall define our target function T to be simply the longitudinal wave vector,
T =28, 19)

We know from the above Eq. (6) that we can avoid these repetitive calculations if we find a

v such that
oT OR

B~ 9B
dar d JdR
ar _dp _ IR Q1)
dpe  dpy Ik

The derivative of our characteristic equation with respect to the longitudinal wave vector is

(20)

In this case,

JR 0 d Yo+ %
—— = — (tan(h - —— 22
25 — ap () — 55 | (22)
Kf 1— %
2
where 5 0B
— (tan(hxy)) = —— —— 23
9B (tan(hir)) Ky cos?(hiy)’ @y
and, introducing ¢ = K <1 — 7’;{;*),
f
BB
8(%+%>:% % YeT¥%dq (24)
B\ q q g 9p’
where
a \ c Cs
99 __F 14 B T TR (25)
aﬁ Kr Ye % Kf
Collecting all these terms, we find the solution to our adjoint Eq. (20),
% 4 Y o Yk
l__B h +(YC+,YS)KJ‘ L_‘_l—‘r%—i—%—‘r K% (26)
v Kpeos?(hir) — KF =YY% \ Wl K — Y% ’
and we know that by defining
1
V=R 27)
Ip
we can compute the relevant gradient as
dp JdR
— =—v—. (28)
dpx Ipi

For example, if we are interested in computing how 8 changes as we vary the height of the

guiding film, py = h, and we therefore need to compute
dR Ky
=__ Y 29
dh  cos?(hky) 29)

and finally, following Eq. (28),

g _ Ky

dn ~cos2(hip)
As we can see in Fig. 1, the adjoint method leads to the correct gradient. However, is far more
efficient for computing multi-variable optimizations than finite-differences gradients.

(30)
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Fig. 1. The derivative of the longitudinal wave vector § with respect to the thickness of a
waveguide slab can faithfully be reproduced using adjoints: the comparison between the
direct calculation (blue line) and adjoint calculation (red dots) of % B shows that the two
methods deliver exactly the same result. However, the adjoint method requires no further
expensive solutions of the eigenvalue system in order to determine the derivatives of f with
respect to other design variables. Thus, the adjoint method delivers the relevant gradients
of a system depending on multiple design parameters faster than the finite-differences ap-
proach. The inset shows a schematic of the waveguide slab structure comprised of the cover
material n,, the guiding film 727, and the substrate n;.

6. Example 2: grating coupler

Silicon grating couplers are used in photonic circuits to couple light between an on-chip waveg-
uide and an off-chip optical fiber [21]. The exact groove pattern (width, position, depth of each
groove) can be optimized to provide the best possible coupling efficiency [22]. For the sake of
illustrating the adjoint method, we will restrict the design space to two variables, the uniform
pitch p and duty cycle d of the grating grooves. Our simulations are assuming a waveguide
thickness of 0.22um, a groove-depth of 0.08 um, a wavelength of 1.55um.

The vector of our design parameters is

p=<§> 3D

Figure 2 shows the effect of these design parameters on the design of our grating coupler.

To illustrate the effect of adjoint-based optimization, we computed the full topology of our
optimization problem for this example (colored background in Fig. 3). We see the areas of
best coupling in dark red, and those of worst coupling in dark blue. Of course, computing the
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(a)

\?_4
&
&

Fig. 2. Our SiO; grating coupler redirects free-space plane-waves (vertical arrows) to a
guided mode inside the waveguide (horizontal arrows). We show the device at (a) a pitch
of 0.58 and a duty cycle of 0.2, and (b) at a pitch of 0.68 and a duty cycle of 0.8. Both the
pitch and the duty cycle are optimized to maximize the coupling between the incident light
and the light inside the waveguide.

full topology is computationally impossible for most real-world applications. Here, it serves
intuition and helps to verify that our algorithm works, indeed, as steepest ascent. Furthermore,
it helped us select rather poor starting points for our optimization.

To perform the actual adjoint-based optimization, we select a number of starting points that
serve as initial parameters. For each point, we

1. compute the direct electromagnetic field for specific design parameters (12),

2. compute the adjoint field for the same design parameters (15),

3. combine the direct and adjoint solutions to (trivially) compute the gradient (16),
4. update the design parameters for steepest ascent,

5. repeat steps 1-4 until convergence.

Note that sensitivity analysis can be performed by executing steps 1-3 for any desired set of
design parameters.

Figure 3 shows the result of the full optimization (steps 1-5), and the (usually unknown)
topology of our problem. In order to compute these optimization runs, finite-differences gradi-
ent optimization would have required three non-trivial field computations per gradient. Adjoint-
based optimization, in contrast, only required two non-trivial field computations to find the
same gradient. Thus, adjoint based optimization is already slightly faster than finite-differences
based optimization for two design parameters.

Consider a grating optimization starting at a pitch of 0.62 and a duty cycle of 0.73 (black
star). Adjoint-based optimization evolves these initial parameters to a pitch of 0.60 and a duty
cycle of 0.275. Figure 4 shows the result of Meep [23] simulations of real(E) before and after
optimization. The coupling of the incident light from the top to inside the waveguide (inside
the black square) has improved from 0.39 to 0.88.

#208553 - $15.00 USD Received 31 Mar 2014; revised 1 May 2014; accepted 12 May 2014; published 21 May 2014
(C) 2014 OSA 2 June 2014 | Vol. 22, No. 11 | DOI:10.1364/0OE.22.012971 | OPTICS EXPRESS 12979



0.68

0.67

0.66

Groove pitch
o
o
w

ot
[
N

0.61

0.6

0.59

0.58

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Groove duty cycle

Fig. 3. Adjoint-based optimization convergence: from three initial parameters (stars) in pa-
rameter regions of poor optical coupling (blue, green, yellow), adjoint-based optimization
evolves the design parameters to the parameter regions of optimal coupling (dark red). The
computation of the relevant gradients requires only two Maxwell solutions, independently
of the number of design parameters. The finite differences approach involves roughly one
Maxwell solution per design variable. Thus, this figure shows that adjoints help optimize
the system faster than the finite-differences approach.

For n design parameters, the advantage of adjoint-based optimization would be even more
striking: direct computation of the finite-differences gradient would require at least n+ 1 field
computations per gradient, whereas the adjoint method still only requires two.

7. Conclusion

We have shown how to use the adjoint method to efficiently design of optical structures. The
key of this method is to compute the gradient of the target function with respect to the design
parameters using only two non-trivial computations, independently of the number of design
parameters. We illustrated this method in two cases: the optical waveguide slab, and a grating
coupler simulated using a standard Maxwell solver. For the latter, the converged electric field E
and the corresponding adjoint field v are the only non-trivial computations required to calculate
the gradient, needed to perform gradient ascent (or gradient descent) on the design parameters.
We believe this method will prove itself immensely valuable in the design of various grating
structures, including a host of non-periodic diffractive structures.
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(a)

(b)

eﬂ!;@eigihil".ill!ll!'!!g!ll

Fig. 4. Electric field in and around the waveguide (outlined in light blue) before and after
adjoint-based optimization: (a) the grating with the initial design parameters couples the
incident light (top) poorly to the waveguide (inside black box), with a complex amplitude
of 0.39 (b) After adjoint-based optimization, the grating couples the light very well to the
waveguide (inside black box), with a complex amplitude of 0.88.
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