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Studies of how patients re-
spond to treatment over time 
are fundamentally impor-
tant to understanding how 

therapies influence quality of life and 
progression of disease during survi-
vorship. When investigators exam-
ine change over time in continuous 
variables (e.g., patient self-reports of 
pain, fatigue, or nausea) in the same 
individuals, repeated measures are 
typically analyzed using analysis of 
variance (ANOVA) or perhaps latent 
growth curve modeling (Brant et al., 
2011; Dudley, McGuire, Peterson, & 
Wong, 2009). Other studies—particu-
larly those that compare the long-
term effects of new drugs or other 
therapeutic regimens to some “stan-
dard” therapy—focus on time to bina-
ry (yes/no) disease-related events of 
interest, such as death (time to event). 
Such studies are particularly apropos 
to generating improvements in cancer 
therapies, in which new treatments 
are compared to “standard” regimens, 
and are shown or disproved to extend 
progression-free survival (PFS), time 
to progression, or overall survival (OS) 
in patients with a particular cancer. 

Time-to-event studies typically 
employ two closely related statisti-
cal approaches, Kaplan-Meier (K-M) 
analysis and Cox proportional haz-

ards model analysis (sometimes ab-
breviated as proportional hazards 
model or Cox model). K-M is a uni-
variate approach, while Cox analy-
sis is multivariable. Both use many 
familiar aspects of parametric and 
nonparametric statistical techniques 
(e.g., independent and dependent 
variables, null hypothesis testing, and 
confidence intervals). On the other 
hand, survival analyses employ oth-
er analytical techniques, terms, and 
computations that some oncology 
advanced practitioners (APs) may be 
less familiar with. 

No published research that ad-
dressed oncology APs’ knowledge and 
ability to interpret statistical tests was 
found, but a study of medical residents 
examined their knowledge within the 
context of statistical procedures used 
in medical studies (Windish, Huot, 
& Green, 2007). Results proved that 
there was a mismatch between statis-
tical procedures used and these clini-
cians’ understanding, and therefore 
the ability to judge the quality and ve-
racity of published research. That is, 
more than 81% correctly interpreted 
relative risk, but only 10.5% under-
stood K-M, and 11.9% could interpret 
the 95% confidence interval (CI) and 
statistical significance. Given that 
APs’ knowledge deficits may be some-J Adv Pract Oncol 2016;7:91–100
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what similar (consider your own understanding of 
these concepts), this article will succinctly describe 
and illustrate K-M analysis. 

KAPLAN-MEIER ANALYSIS
Kaplan and Meier (1958) first described the 

approach and formulas for the statistical proce-
dure that took their name in their seminal paper, 
Nonparametric Estimation From Incomplete 
Observations. They described the term “death,” 
which could be used metaphorically to repre-
sent any potential event subject to random sam-
pling, particularly when complete observations 
of all members of a random sample cannot be 
made. Incomplete observations often occur be-
cause contact with some sample members is 
lost before the event, some other intervening 
variable affects the event, or insufficient time 
has passed to observe the event in all sample 
members. Any of these cases would result in a 
participant being censored, as discussed fur-
ther below. An event is a binary variable that can 
only have a yes or no value (e.g., death, hospital 
discharge or readmission, heart attack, recovery 
from an infection, or relapse from smoking cessa-
tion, etc.). K-M analyses are not unique to medical 
studies; they are used by researchers in other dis-
ciplines to study time to particular events. 

Survival Analyses
Survival analyses are statistical methods used 

to examine changes over time to a specified event. 
K-M is the most frequent survival analysis meth-
od used in randomized (phase III and some 
phase II) medical clinical trials in which the fol-
lowing criteria are met:

 •  Patients are randomly assigned to 
different treatment arms;

 •  All patients do not enter the study at the 
same time;

 •  Patients drop out of or are lost from the 
study at different time intervals after 
entering the study; and 

 •  The outcome variable of interest may 
or may not occur during the study 
observation period (Rich et al., 2010). 

K-M can calculate how long after starting a 
particular treatment that the studied event (e.g., 

death, disease progression, etc.) occurred for in-
dividuals who were not otherwise lost to the 
sample—or until the study has ended (Peto et al., 
1977; Rich et al., 2010). 

Underlying Concepts and Terms
Understanding studies analyzed with K-M re-

quires appreciation of associated concepts, terms, 
assumptions, and methods. Other important con-
cepts are the “rules” for the study and K-M analysis 
set before the study is implemented. These include 
the conditions under which a study will be stopped 
early, stopping boundaries, how to deal with missing 
data, and the number and points of data analyses.

One important factor is that patients enter 
clinical trials and are eliminated from the sample 
(and data analysis) at different times: when a study 
opens, as accrual continues, for a predetermined 
period, or until a desired sample size is reached, as 
patients die (or experience another event of inter-
est) or are lost from the sample for another reason. 
When patients are lost from a K-M study for any 
reason, they are considered to be censored. Being 
censored does not have any negative connotation; 
it is merely part of the language of K-M.

Censoring is a major difference between K-M 
and more traditional parametric analyses, in that 
researchers must adjust the data at each point 
where one or more patients are lost from the study 
for any reason to take censored cases into account 
(Rich et al., 2010). Sample members become cen-
sored when investigators cannot determine if or 
when a subject ultimately experiences the nega-
tive event, and it can occur during (when the sub-
ject experiences the event or otherwise drops out 
or is lost from the study) or at the end of the study 
(right censoring of all remaining subjects because 
no further data will be collected). Important as-
sumptions are that censored patients have the 
same likelihood of survival as those continuing in 
the study (an assumption not easily testable), and 
that survival probabilities are the same whether 
individuals enter a study early or late (can be ex-
amined with split-half analysis; Jager et al. 2008). 
Censored patients are included in probability esti-
mates of the event to the evaluation point preced-
ing their censoring, adding a maximum amount of 
data, but are eliminated from subsequent analyses 
(Blagoev, Wilkerson, & Fojo, 2012). 
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Missing data is a problem that can potentially 
bias data analysis and statistics. One important 
way to deal with this is to use the intent-to-treat 
strategy, which includes all patients who entered 
the study in the sample denominator and requires 
patient follow-up and data collection whenever 
possible (Shih, 2002). Another strategy that can 
help address this problem is to track the numbers 
of patients in each arm who withdraw and reasons 
for withdrawal and to include this information in 
research reports. 

A way to envision these concepts is to consider 
a hypothetical trial, and the first 10 consenting pa-
tients randomized to arm A shown in Figure 1A. 
We can appreciate the sequential order that pa-
tients in the cohort entered the study, and whether 
they experienced the event (E) or were censored 
(C). We cannot determine how long each patient 
remained on study (his or her serial time) before E 
or C occurred, but this might be a brief or extend-
ed period. Some study participants do not experi-
ence the study event, and others are dropped or 
are withdrawn from the study for one or more rea-
sons. For instance, since data collection has not yet 
ended, patient 2 has not experienced the outcome 
and has not yet been censored, as the serial line is 
continuing (if this were the endpoint for data col-
lection, all remaining patients become censored). 
Before data analysis, all patients in each cohort are 
first arranged from the shortest to longest serial 
time (time on study) and are analyzed as if they all 
began the study at the same time point, as shown 
in Figure 1B. In this representation, it is easier to 
see that patients have varying serial times to the 
event or to becoming censored (Jager, van Dijk, 
Zoccali, & Dekker, 2008; Rich et al., 2010). 

In addition, rules for boundaries to stop 
a study early, and the number of endpoints of 
planned data analyses, should be explicit before 
a study is implemented. A predetermined stop-
ping boundary is a method to determine if a study 
can be stopped early—for instance, when the pri-
mary outcome variable has been reached (Pocock, 
2005). A stopping boundary must be stringent 
(e.g., have a small p value) to support meaningful 
clinical differences in treatments, which is sug-
gested to be .01 to confirm clinical benefit. This is 
crucial to legitimately support clinically relevant, 
evidence-based practice; to achieve an adequate 

sample size within the intended duration of a 
trial; to positively change particular therapies; 
to meet the goals of researchers and regulators 
to conduct scientifically rigorous studies; and to 
disseminate data supporting therapy advances as 
rapidly as possible (Zannad et al., 2012). When a 
highly statistically significant clinical trial ben-
efit is confirmed and leads to early stopping, the 
researchers have an ethical responsibility to of-
fer the better treatment to patients in the less ef-
fective treatment arm (considering that adverse 
effects and treatment burdens do not outweigh 
benefits). For example, costs of therapy may be a 
burdensome limitation for some patients because 
of insurance reimbursement policies. 

Interpreting a Kaplan-Meier Plot
The statistical output for a K-M analysis of-

fers a visual representation of predicted survival 
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Figure 1. (A) Hypothetical first patients as-
signed to arm A as they sequentially enter the 
study. Each patient’s serial time (on study) ends 
with an E (for death in this example) or a C (for 
censored). If the data analysis is completed 
at the end of the period marked by the right 
border of the x-axis, all patients who have not 
died or already been censored are censored at 
that point. (B) The same hypothetical patients 
are arranged from shortest to longest serial time 
before K-M analysis, allowing us to see the initial 
intervals that will be graphed on the horizontal 
(time) axis.
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curves (i.e., from not experiencing the event of in-
terest) of two or more groups. It is not a smooth 
curve or line, but it has a distinctive monotonic 
(one-direction) stair-step appearance. For any  
K-M estimator, the horizontal x-axis represents 
the time variable expressed in a linear fashion (i.e., 
weeks, months, years, etc.). All patients start at the 
top (1.0 or 100%) of the y-axis, which indicates the 
sample proportion that has not experienced the 
studied event. Each horizontal line (except for the 
first) begins and ends with the occurrence of the 
event in two subsequent patients in a treatment 
arm (Jager et al., 2008; Rich et al., 2010). Only the 
event influences the duration of a particular inter-
val, whereas censored patients are usually indi-
cated by tick marks (or dots) along the interval in 
which they were censored. 

In cancer clinical trials, negative events (e.g., 
PFS or OS) result in a left to right descending pat-
tern as patients no longer “survive” the event: 
They experience disease progression or death. 
Survival curves can actually go down or up to 
show the same information over time; downward 
plots display patients who have not experienced 
the event, whereas upward plots illustrate the cu-
mulative patients who did experience the event 
(Pocock, Clayton, & Altman, 2002). 

The length of each horizontal line represents 
the survival duration for that interval, and all 
survival estimates to a given point represent the 
cumulative probability of surviving to that time. 
Intervals are not identical, and a strength of the 
K-M plot is that it can manage varying interval 
lengths (Rich et al., 2010). Figure 2A shows how 
each study interval (after the first) begins with 
the studied event in one patient and ends with the 
event in the next patient in that cohort. This leads 
to the K-M plot looking like a series of downward 
steps. The probability of surviving an interval is 
related to the number of patients in that inter-
val: Both the numerator and the denominator de-
crease by the number of patients who experienced 
the event plus those who were censored. Each of 
these probabilities contributes to the subsequent 
and final probability of not experiencing the event 
(e.g., progression or death). 

The “steps” of the K-M plot provide the vi-
sual representation of individuals who have or 
have not experienced the event. We can look 

at the K-M plot in Figure 2A and calculate pre-
dicted survival for the first interval. Assuming 
the original sample had 10 patients, if we did not 
consider the censored patient, the estimated sur-
vival at this point (the first drop) would be 9/10 
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Figure 2. (A) A hypothetical Kaplan-Meier curve 
of one cohort (arm). Each horizontal portion is the 
interval between the studied event between one 
and the next subject in that arm. Only the event in-
fluences the interval length, whereas tick marks in-
dicate censored subjects. (B) Median survival (from 
experiencing the studied event) can be estimated 
in both arms by drawing a line on the y-axis at 0.5 
(50%). Locating the point at which each intersects 
0.5 shows median survival is approximately 6.5 
months in cohort B and 11 months in cohort A. 
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(90%). However, this is actually 8/9 (88.8%). 
Each interval is assumed to be independent, and 
each affects the subsequent interval. The verti-
cal lines connect each interval and represent the 
decrease in likelihood of having experienced the 
event at that point. In Figure 2A, at 2.5 months 
after starting the study, the chance of not expe-
riencing the event is 88.8%. It is important to 
understand that this example only serves to il-
lustrate a K-M “curve” in a very simple fashion. 
Very small samples are prone to error and are less 
valid and reliable than large samples. If patients 
were still accruing to the study, analysis would 
occur at a later, more reasonable time to judge  
treatment efficacy.

K-M curves with many small steps have larg-
er sample sizes, while those with large steps usu-
ally have a limited number of subjects and are 
thus less accurate (Rich et al., 2010). “Drops” can 
be seen in the curve at variable intervals, and in 
studies with long observation times, bigger de-
creases toward the right side of the plot are seen 
because later events are larger fractions of the 
probability estimate for the remaining cohort 
(Blagoev et al., 2012). Similarly, few surviving 
patients at the right side of the K-M curve mean 
less accurate survival estimates and greater un-
certainty compared to when many patients are in 
a study. It has been recommended to halt estima-
tions of survival curves when the proportion of 
patients who have not experienced the event be-
comes unduly small, perhaps when only 10% to 
20% of an original large sample or fewer than 10 
patients in a small study are still being followed 
(Bollschweiler, 2003; Pocock et al., 2002).

If we look at the same hypothetical K-M plot 
with both treatment arms included (Figure 2B), we 
can see that both curves pass through the 50th per-
centile point. If a curve passes through 50%, the 
reader can quickly estimate median survival for 
patients in that treatment arm by drawing a verti-
cal line from where the curve crosses the 50% to 
the x (time) axis and comparing median survival 
if both curves pass through the 50% point. We can 
see in the hypothetical example that median sur-
vival (50% of patients would be estimated to be 
surviving) is about 11 months for treatment A and 
6.5 months for treatment B. Median survival is re-
ported in most studies because survival times are 

usually skewed, and the median is a better measure 
of centrality than the mean. Furthermore, there is 
no way to know if or when patients who are alive 
and not censored at the end of a study will experi-
ence the event of interest, so a mean cannot be cal-
culated (Jager et al., 2008). The reader can also see 
that the curves appear to have separated. Again, 
this is not a realistic K-M example, but if this sepa-
ration were consistent over time, it would give us 
confidence about real treatment differences. 

K-M estimates are most commonly reported 
with the log-rank test or with hazard ratios. The 
log-rank test calculates chi-squares (χ2) for each 
event time, which are summed to calculate an ul-
timate chi-square for each arm (Jager et al., 2008; 
Rich et al., 2010). Log-rank results compare the 
full curves of each group and generate a signifi-
cance level (p value; Rich et al., 2010). The log-
rank test allows between-group comparisons of 
survival estimates but not the size of a potential 
difference or of confounding variables such as age.

Hazard ratios quantify the opposite likelihood: 
that the “hazardous” event will occur during study 
intervals (Blagoev et al., 2012), and are similarly 
calculated by summing χ2

 for each event, provid-
ing the final observed and expected numbers for 
the full K-M curve (Rich et al., 2010). In the sim-
plest terms, a hazard ratio expresses the chance 
(or hazard) of the events occurring in the treat-
ment arm as a ratio of the events occurring in the 
control group. A hazard ratio has no dimensions 
and by itself provides only information about the 
uniformity and reliability of the data (Blagoev et 
al., 2012). Hazard ratios change over time and are 
reflected in the slope of the K-M plot. Reported 
hazard ratios assume that the differences between 
groups are a constant distance apart (i.e., the K-M 
survival curves) and are proportional. If this as-
sumption is not met, a reported hazard ratio is ir-
relevant. A hazard ratio of greater than 1 or less 
than 1 means that survival was better in one of the 
groups (Spruance, Reid, Grace, & Samore, 2004).

DISCUSSION: CLEOPATRA ANALYSIS
The Clinical Evaluation of Pertuzumab and 

Trastuzumab (CLEOPATRA) trial, a random-
ized, double-blind, multinational phase III study, 
accrued 808 patients in the intent-to-treat popu-
lation over 29 months (2008 to 2010). Study find-
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ings were published in three articles (Baselga et al., 
2012; Swain et al., 2013, 2015). The study timeline 
is briefly summarized in Table 1. The CLEOPATRA 
study was sponsored by a pharmaceutical company 
that, in partnership with the senior academic au-
thors, collected and analyzed the data (no indepen-
dent statistician was reported). An overview of the 
CLEOPATRA trial can be found in the article by 
Karen Herold beginning on page 83.

The study was planned with two prespecified 
K-M analyses: an interim one and a final one done 
after 381 events of disease progression or death 
from any cause (Baselga et al., 2012). Random as-
signment resulted in 406 patients in the control 
group (placebo + trastuzumab + docetaxel) and 

402 patients in the pertuzumab group (pertu-
zumab + trastuzumab + docetaxel); treatment was 
planned for every 3 weeks to progression. Only the 
dose of docetaxel could be altered. Eligible patients 
had locally recurrent, unresectable, or metastatic 
(no central nervous system spread) HER2-positive 
breast cancer. Independent tumor assessments 
were done every 9 weeks until disease progression 
or death. The primary endpoint was PFS, defined 
as “radiographic confirmation of disease progres-
sion by Response Evaluation Criteria in Solid Tu-
mors (RECIST) guidelines or death from any cause 
within 18 weeks after the last independent tumor 
assessment.” The study employed the common 
practice of using date of the radiographic confir-

Table 1. CLEOPATRA Overview

0–29 mo 39 months 51 months 62 months

Feb 2008 to July 2010 (pt accrual) May 2011 May 2012 Feb 2014

N = 406
Placebo, 
trastuzumab, 
docetaxel (control)

N = 402
Pertuzumab, 
trastuzumab, 
docetaxel 
(treatment)

Data collection cutoff: 
interim analysis 
(prespecified)

Data collection 
cutoff: second interim 
analysis  
(not prespecified)

Data collection 
cutoff: final analysis 
(prespecified)

Trial plan

Publications

Baselga et al. (2012) Swain et al. (2013) Swain et al. (2015)

 •  800 pts with advanced HER2+ 
breast cancer, randomized 1:1

 •  No previous chemo for metastatic 
disease

 •  Stratified by prior treatment status, 
region (North or South America, 
Europe, or Asia)

 • Treatment q3wk to progression 
 • Only docetaxel dose could be altered
 •  Independent tumor assessments by 

investigator q9wk until radiographic-
confirmed disease progression or 
death

 •  PFS analysis after about 381 events 
(independently assessed disease 
progression or death from any 
cause), along with interim analysis 
of OS 

 •  If the O’Brien-Fleming stopping 
boundary was not crossed at interim 
analysis of OS, patients continued on 
blinded study therapy until the final 
analysis of OS after 385 deaths 

 •  Descriptive evaluation of adverse 
events in safety population

 •  Prespecified interim 
analysis

 •  Median FU 19.3 mo 
 •  Primary endpoint for 

PFS met
 •  Median PFS: control 

group 12.4 mo, 
pertuzumab group 
18.5 months

 •  Hazard ratio for 
progression or death, 
0.62 (95% CI = 
0.51–0.75), p < .001

 •  OS after 165 events, 
did not cross 
O’Brien-Fleming 
stopping boundary

 •  Adverse events, 
safety similar in both 
groups

 •  Not protocol 
specified, requested 
interim analysis 
(OS)

 •  Median PFS: 
control 12.4 mo, 
pertuzumab 18.7 mo 

 •  Median OS: control 
37.6 months (95% 
CI = 34.3–NR), 
pertuzumab group 
not reached (95%  
CI = 42.4–NR) 

 •  Primary endpoint 
for OS reached 

 •  Adverse events 
similar, no new 
safety concerns

 •  Crossover to the 
pertuzumab-
containing regimen 
offered to patients 
still on study, 
control treatment 
(analyzed with 
control)

 •  Prespecified final 
analysis

 •  Descriptive, as 
endpoints already met

 •  Median PFS: control 
12.4 mo, pertuzumab 
18.7 mo 

 •  Median OS: control 40.8 
mo (95% CI = 35.8–
48.3), pertuzumab 56.5 
mo (95% CI = 49.3–NR)

 •  No new safety issues in 
crossover patients 

 •  Early between-group 
separation in K-M 
curves maintained over 
time

Note. OS = overall survival; FU = follow-up; PFS = progression-free survival; CI = confidence interval; NR = not reached; 
K-M = Kaplan-Meier.
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mation as the date of disease progression, which 
most likely occurred somewhere between the 
9-week tumor assessment intervals. This would in-
crease the duration of PFS and introduce bias into 
calculated median survival (Panageas, Ben-Porat, 
Dickler, Chapman, & Schrag, 2007). 

In accordance with the requirements for a 
trustworthy K-M trial, a single, prespecified interim 
analysis of the primary study outcome of PFS after 
381 patients experienced progression was planned 
(Baselga et al., 2012). This was calculated to give 
the study an 80% power to detect a 33% improve-
ment in median PFS in the pertuzumab group. PFS 
is frequently the primary endpoint, particularly as 
new targeted therapies become available (Panageas 
et al., 2007). Progression-free survival is a desirable 
outcome because it is not influenced by later-line 
therapies and can be measured earlier than OS. 
This reduces new drug development time and more 
rapidly brings effective agents to market. 

In CLEOPATRA, K–M was used to estimate 
the independently assessed median PFS in each 
group, log-rank test to compare PFS between the 
two groups, and Cox proportional-hazards model 
to estimate the hazard ratio and 95% CIs. Analysis 
of OS was planned to be done after 385 patients 
had died if the stopping boundary had not been 
crossed (Baselga et al., 2012). Other secondary 
endpoints objective response (OR) rate and safety 
would be analyzed at this point.

In this analysis, 80.2% of patients in the pertu-
zumab group and 69.3% in the control group expe-

rienced an OR (Baselga et al., 2012). Median PFS 
was 18.5 months in the pertuzumab group and 12.4 
months in the control group. This exceeded the 
study hypothesis that median PFS would be 33% 
greater in the pertuzumab than in the control group. 
The hazard ratio for progression or death was 0.62 
(95% CI = 0.51–0.75), p < .001 in favor of pertuzumab. 

Similar to odds ratios and relative risk, a hazard 
ratio is interpreted as such: Those in the treatment 
(pertuzumab) group experienced death at a rate 38% 
less than those in the control group. This decrease 
could be as great as 49% or as little as 25% with 95% 
confidence. With this interval ranged less than and 
not including the value of one, we would conclude 
the hazard ratio is both protective and statistically 
significant. Interim analysis of OS was done after 
165 events: 96 deaths in the control group and 69 in 
the pertuzumab group. The data showed a “strong 
trend toward a survival benefit” with pertuzumab 
and the hazard ratio was 0.64 (95% CI = 0.47–0.88;  
p = .005), which the authors stated was not statisti-
cally significant (recall from the earlier discussion 
that the p value should be ≤ .01). The number of pa-
tients censored and the reasons for censoring were 
not included in this paper, possibly because both 
disease progression and death were included in the 
definition of not meeting PFS. 

After another year of follow-up, a second un-
planned interim analysis of CLEOPATRA was done 
because European health authorities requested 
more information about OS of study patients 
(Swain et al., 2013). By that time, 267 deaths—154 

Table 2. Patients Withdrawn (Censored) From CLEOPATRA Study

Control group (trastuzumab + 
docetaxel + placebo)

Treatment group (trastuzumab + 
docetaxel + pertuzumab)

Disease progression 281 264

Adverse events 23 34

Declined treatment 23 21

Died 13 (safety) 7 (safety)

Selection criteria violation 1 2

Protocol violation 1 0

Failed to return 1 4

Other 2 6

Total 345 withdrew from study 338 withdrew from study

Note. Information from Swain et al. (2015).
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in the control group and 113 in the pertuzumab 
group (69% of prespecified total for OS)—had oc-
curred. The stopping boundary for each interim 
analysis was preset to use the O’Brien-Fleming 
approach to deal with multiple data analyses 
(“multiple looks”), and the stopping boundary  
was crossed. 

Multiple looks, or data-dependent stopping, 
are used to find evidence of a significantly large 
treatment difference to end a study earlier than 
originally planned. The major problem with this is 
the likelihood of type I error (falsely rejecting the 
null hypothesis that there is no difference between 
treatments) increases with each interim analysis, so 
unplanned interim analyses are discouraged. A sec-
ond problem is “multiple outcomes,” which occurs 
when a study that focuses on one outcome neces-
sarily focuses on other outcomes that are likely in-
terdependent and not independent. For instance, 
the definition of PFS includes disease progression 
or death, which overlaps with OS. In addition, 
most patients probably died from their disease, but 
deaths could be related to other factors. 

Swain and colleagues (2013) correctly recog-
nized the importance of not increasing the risk for 
type I error in the analysis of OS. They amended 
the protocol again to apply the O’Brien-Fleming 
stopping boundary, defined as a significance level 
of ≤ .0138 and a hazard ratio of ≤ 0.739. More pa-
tients in the control group died than did those in 
the pertuzumab cohort, 154 of 406 (38%) and 113 
of 402 (28%), respectively. The hazard ratio of 0.66 
(95% CI = 0.52−0.84, p = .0008) crossed the preset 
O’Brien-Fleming stopping boundary, leading the 
authors to conclude there was a statistically signifi-
cant OS benefit for patients who had received per-
tuzumab in addition to trastuzumab plus docetaxel. 

The final CLEOPATRA article was descriptive 
and updated OS and PFS (Swain et al., 2015). This 
was essentially the icing on the cake because signifi-
cant benefit for adding pertuzumab to trastuzumab 
plus docetaxel had been established in the reported 
second interim analysis (Swain et al., 2013). The 
definition of PFS was changed to “the time from 
randomization to documented radiographic evi-
dence of progression” (no mention of death). 

Patients who were alive or lost to follow-up 
were censored at the last date they were known 
to be alive, which is what we would expect in K-M 

analysis (Swain et al., 2015). The most common 
reason for censoring was disease progression, fol-
lowed distantly by life-threatening adverse treat-
ment-related events (see Table 2 on page 97). In 
addition to changing definitions for the final anal-
ysis, K-M curves were handled differently. That is, 
in Baselga et al. (2012), the PFS K-M plot indicates 
all points at which events took place as tick marks 
on the plot (Figure 3). The reason for this was not 
given, but it illustrates the importance of reading 
figure legends. On the other hand, Swain and col-
leagues (2015) showed the K-M curve we would 
expect, with tick marks showing the time points at 
which patients were censored (Figure 4). 

A total of 168 (41.8%) in the pertuzumab group 
and 221 (54.4%) in the control group had died by 
the time of the final report (Swain et al., 2015). As 
expected, the hazard ratio favored the pertuzumab 
cohort (0.68; 95% CI = 0.56–0.84; p < .001). Median 
OS in the pertuzumab group was 56.5 months (95% 
CI = 49.3 mo–not reached) and 40.8 months (95% CI 
= 35.8–48.3 mo) in the control group: a difference of 
15.7 months. Estimates of OS shown in Table 3 illus-
trate the fact that the likelihood of being alive was 
greater at 1, 2, 3, and 4 years for patients receiving 
pertuzumab than those in the control group (Swain 
et al., 2015). The reported CIs overlapped only at 
year 1, meaning that these values were within the 
bounds of random chance (Pocock et al., 2002). 

90
80

100

60
70

40
50

30

P
ro

g
re

ss
io

n
-f

re
e 

S
u

rv
iv

al
 (

%
)

Months

20
10

0 5 10 15 20 25 30 35 40

Hazard ratio, 0.62
(95% Cl, 0.51–0.75)

p<.001

Pertuzumab (median, 18.5 mo)
Control (median, 12.4 mo)

Figure 3. Kaplan-Meier estimates of progres-
sion-free survival in patients in the intention-
to-treat population in the CLEOPATRA trial. 
Tick marks designate the times of events. This 
highlights the importance of carefully reading 
legends, particularly in Kaplan-Meier curves in 
which tick marks or dots usually indicate cen-
sored individuals. Adapted from Baselga et al. 
(2012).
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Table 3.  Overall Predicted Survival in the 
CLEOPATRA Trial

Docetaxel + trastuzumab 
+ pertuzumab (95% CI)

Docetaxel + trastuzumab  
+ placebo (95% CI)

1 year 94.4% (92.1–96.7) 89.0% (85.9–92.1)

2 years 80.5% (76.5–84.4) 69.7% (65.0>4.3)

3 years 68.2% (63.4–72.9) 54.3% (49.2–59.4)

4 years 57.6% (52.4–62.7) 45.4% (40.2–50.6)

Note. CI = confidence interval. Information from Swain et 
al. (2015). 

CONCLUSION
In sum, K-M analyses of the CLEOPATRA 

study met the expectations of the statistical tech-
nique and addressed potential limitations. For in-
stance, the issue of multiple looks was correctly 
addressed by making the p value more stringent. 
The authors also included important measures of 
statistical uncertainty—confidence intervals—that 

support the CLEOPATRA conclusions and give 
readers confidence in the research reports. l 
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