
Highlights
•  End-effector type robot-assisted gait training systems were found to be more effective 

in locomotor recovery in stroke patients when they were applied in conjunction with 
conventional gait training rather than conventional gait training alone. However, this study 
does not confirm that the exoskeleton type robot-assisted gait training was more effective 
when it was applied in conjunction with the conventional gait training rather than the 
conventional gait training alone.

•  The robot-assisted gait training paradigm offers intensive, repetitive, accurate kinematic 
feedback and symmetrical gait practice while reducing the workload for the therapist, 
reducing the cost of stroke rehabilitation.
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ABSTRACT
While a variety of robot-assisted gait training systems have been widely applied for locomotor 
rehabilitation in stroke patients, the best supporting evidence for robot-assisted gait training 
systems remains unknown. The purpose of this study was to provide the best robot-assisted 
gait training and clinical evidence by comparing the effects of exoskeleton and end-effector 
type robot-assisted gait training in stroke rehabilitation. The present study underwent a 
review of the literature to determine the best clinical evidence of the most commonly utilized 
robot-assisted gait training paradigms (end-effector and exoskeleton types) in stroke gait 
rehabilitation. The review corroborates the compelling evidence that combined robot-
assisted gait training was advantageous in stroke rehabilitation, as it offers additive special 
therapeutic effects that were not afforded by conventional therapy alone. Most importantly, 
the robot-assisted gait training paradigm provided more intensive, repetitive, accurate 
kinematic feedback and symmetrical gait practice, while reducing therapist labor, which 
is often not affordable in current stroke rehabilitation care. Both the robot-assisted gait 
training with either the end-effector type or exoskeleton type was beneficial for improving 
motor recovery, gait function, and balance in stroke patients when it was combined with 
the conventional physical therapy. The robot-assisted gait training should be used as an 
augmented gait intervention for stroke population.

Keywords: Robot-Assisted Gait Training; Stroke; End-Effector Type Robot; Exoskeleton Type 
Robot

INTRODUCTION

Hemiparetic gait impairment is a hallmark sequela in stroke victims and affects ambulation 
and quality of life [1]. Due to advanced medical technology and care, the mortality rate from 
stroke has significantly decreased. However, as many as 80% of stroke survivors suffer from 
locomotor dysfunction, which is characterized as asymmetrical step length, slow velocity, 
and altered biomechanical alignment [2,3].

Hemiparetic gait kinematics encompass excessive ankle plantar flexion during the 
swing phase and knee hyperextension and hip flexion during the stance phase, whereas 
kinetically decreased and asymmetrical ground reaction force is manifested during the 
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push up phase. Recent stroke rehabilitation evidence suggests that a large number of 
repetitions (> 600) [4] and accurate sensorimotor feedback (e.g., kinematics and kinetics) 
are necessary to produce neuroplastic changes and associated locomotor functional 
recovery in stroke patients [5].

To restore hemiparetic gait, 2 innovative robot-assisted gait training paradigms utilizing the 
end-effector and exoskeleton robot types have recently been adopted to provide an ample 
number of repetitions with precise kinematics and kinetic sensorimotor feedback. In fact, 
the cumulative robotics studies demonstrated promising effects when robot-assisted gait 
training was employed using either end-effector or exoskeleton types in conjunction with 
conventional gait training. Conventional gait training often poses inherent issues, as it is 
labor intensive, costly, and does not provide accurate sensorimotor feedback.

Hence, the present study underwent an extensive review of the literature to determine the 
best clinical evidence of the most commonly utilized robot-assisted gait training paradigms 
(end-effector and exoskeleton types) in stroke gait rehabilitation.

End-effector devices work by applying mechanical forces to the distal segments of limbs. In 
end-effector devices, a subject's feet are placed on foot-plates, whose trajectories simulate 
the stance and swing phases during gait training [6]. End-effector type robots offer the 
advantage of easy setup, but suffer from limited control of the proximal joints of the limb, 
which could result in abnormal movement patterns. Examples of end-effector devices are 
the Gate Trainer GT1 (Reha-Stim, Berlin, Germany) and the G-EO-System (Reha Technology 
AG, Olten, Switzerland). In contrast, exoskeleton-type robotic devices have robot axes 
aligned with the anatomical axes of the wearer. These robots provide direct control over 
individual joints, which can minimize abnormal posture or movement. Construction of 
exoskeleton-type devices is more complex and more expensive than that of the end-
effector type. Exoskeleton devices are outfitted with programmable drives or passive 
elements that move the knees and hips during the phases of gait [6]. Examples of the 
exoskeleton type of device are the Walkbot (P&S Mechanics, Seoul, Korea) and the Lokomat 
(Hocoma AG, Zurich, Switzerland).

In this manuscript, we used a Cochran search using keywords, including robot-assisted 
gait training, end-effector type, and exoskeleton type, to summarize the past 10 years of 
research concerning both end-effector and exoskeleton types of gait robot devices. The 
current status of robot-assisted therapy in stroke rehabilitation was discussed.

END-EFFECTOR TYPE OF ROBOT-ASSISTED GAIT TRAINING

The results of 10 randomized controlled trials that investigated end-effector robot gait 
training in stroke patients are summarized in Table 1. Three studies compared therapeutic 
effects on motor recovery, gait function, and balance between a combination of the robot-
assisted gait training and conventional gait training and conventional gait training alone in 
patients with chronic stroke (> 6 to 12 months) [7-9]. Combined robotic and conventional 
gait training produced greater improvements in gait function than did conventional gait 
training alone. Similarly, combined robotic and conventional gait training yielded a superior 
effect on gait function, balance, and activities of daily living than did conventional gait 
training in patients with subacute stroke (< 6 weeks to 6 months). These collective findings 
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suggest that robot-assisted gait training provides an additive effect to conventional gait 
training in patients with hemiparetic stroke, regardless of the stroke phase condition.

EXOSKELETON TYPE OF ROBOT-ASSISTED GAIT TRAINING

Table 2 presents the summary of 11 randomized controlled trials that compared the effects of 
exoskeleton robot-assisted gait training with conventional gait training on motor recovery, gait 
function, and balance in hemiparetic stroke. Mayr et al. [10] and Husemann et al. [11] reported 
greater augmented effects from combined exoskeleton robot-assisted gait training combined 
with conventional gait training compared with conventional gait training alone in 10 subacute 
stroke patients. Hornby et al. [12] conducted a randomized controlled study that compared 
the effects of exoskeleton robot-assisted gait training and manual facilitation using an assist-
as-needed paradigm on gait function in patients with chronic stroke. Moreover, Hidler et 
al. [13] also conducted a multicenter randomized trial that investigated the usefulness of 
Lokomat robot-assisted therapy in 72 patients with subacute stroke and found less effective 
in the 6-minute walk test (6MWT) and Functional Ambulation Category (FAC) tests than the 
conventional gait training. Similarly, Hornby et al. [12] found that Lokomat robot-assisted 
therapy in 62 patients with chronic stroke was not superior to the conventional gait training. 
Such inconsistent results in the Lokomat robot-assisted studies may result from different 
experimental design and testing methods utilized [10], lack of volitional neuromuscular 
control [14], restricted pelvic and trunk movement control [15,16], arm swing, as well as 
altered acceleration and deceleration from pre-swing to initial contact [17].
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Table 1. End-effector type of robot-assisted gait training
Authors Robotic  

device
No. of 

subjects
Stroke  
stage

Treatment intensity Outcome measures Additional therapy Summary  
of results

Tong et al. [20] Gait trainer 46 Subacute 5 times a week for  
4 weeks, 20 minutes

5MWT, EMS, BBS, FAC, MI 
leg subscale, FIM, BI

Functional electrical 
stimulation

More effective

Dias et al. [7] Gait trainer 40 Chronic 5 times a week for  
4 weeks, 40 minutes

MI, TMS, mASS, BBS, RMI, 
FMA, FAC, BI, 10MWT, TUG, 
6MWT, step tests

- No difference

Pohl et al. [21] Gait trainer 155 Subacute 5 times a week for  
4 weeks, 20 minutes

FAC, BI, RMI, MI - More effective

Ng et al. [22] Gait trainer 54 Subacute 5 times a week for  
4 weeks, 20 minutes

FAC, MI, BBS, 5MWT, BI, 
EMS, FIM, MMSE

Functional electrical 
stimulation

More effective

Peurala et al. [23] Gait trainer 56 Subacute 5 times a week for  
3 weeks, 20 minutes

FAC, 10MWT, 6MWT, BI, BMI, 
MMAS, MRS, RMAS, SSS

- More effective

Morone et al. [24] Gait trainer 48 Subacute 5 times a week for  
4 weeks, 20 minutes

FAC, 10MWT, MI, 6MWT, 
RMI, AS, BI, CNS, MMSE, 
RS, TCT

- More effective

Geroin et al. [8] Gait trainer 30 Chronic 5 times a week for  
2 weeks, 50 minutes

FAC, 10MWT, MI, 6MWT, 
RMI, ESS, MMSE, 
Spatiotemporal Gait 
Parameters, MAS

Transcranial direct 
current stimulation

More effective

Conesa et al. [25] Gait trainer 103 Subacute 5 times a week for 4 
weeks, 20–40 minutes 
(tolerably)

FAC, 10MWT, TBS, TGS - Improved

Hesse et al. [26] G-EO 30 Subacute 5 times a week for  
4 weeks, 30 minutes

FAC, RMI, 10MWT, MI - More effective

Picelli et al. [9] G-EO 22 Chronic 5 times a week for  
4 weeks, 30 minutes

6MWT, MAS, TGS, TSA Botulinum toxin  
type A

More effective

5MWT, 5-meter walk test; EMS, Elderly Mobility Scale; BBS, Berg Balance Scale; FAC, Functional Ambulatory Category; MI, Motricity Index; FIM, Functional 
Independence Measure; BI, Barthel Index; TMS, Toulouse Motor Scale; mASS, modified Ashworth Spasticity Scale; RMI, Rivermead Mobility Index; FMA, Fugl-
Meyer Assessment; 10MWT, 10-meter walk test; TUG, Timed Up and Go; 6MWT, 6-minute walk test; MMSE, Mini-Mental State Examination; MMAS, Modified 
Motor Assessment Scale; MRS, Modified Ranking Scale; RMAS, Rivermead Motor Assessment Scale; SSS, Scandinavian Stroke Scale; AS, Ashworth Scale; CNS, 
Canadian Neurological Scale; RS, Rankin Scale; TCT, Trunk Control Test; ESS, European Stroke Scale; MAS, Modified Ashworth Scale; TBS, Tinetti Balance Scale; 
TGS, Tinetti Gait Scale.
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CONCLUSION

The present review highlights current clinical evidence regarding exoskeleton and end-
effector robot-assisted gait training approaches in subacute and chronic stroke patients. A 
recent Cochrane review [18] reported superior benefits with robot-assisted gait training in 
stroke rehabilitation. However, the types of robot-assisted gait training devices and their 
clinical effects are undetermined. Therefore, our review has focused on the types of robot-
assisted gait training devices and their clinical effects in robotic assisted gait training. 
A meta-analysis of robot-assisted gait training studies is challenging owing to diverse 
robotic devices, heterogeneous subject characteristics, and varying experimental designs. 
Therefore, the present review attempted to provide clinical evidence as to which types of 
exoskeleton type or end-effector type devices are more effective for stroke rehabilitation and 
locomotor recovery and function. Taken together, the findings showed that combined robot-
assisted gait training was advantageous in stroke rehabilitation, as it offers additive special 
therapeutic effects that were not afforded by conventional therapy alone. Most importantly, 
the robot-assisted gait training paradigm renders intensive, repetitive, accurate kinematic 
feedback and symmetrical gait practice, while reducing therapist labor, which is often not 
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Table 2. Exoskeleton type of robot-assisted gait training
Authors Robotic  

device
No. of 

subjects
Stroke  
stage

Treatment intensity Outcome measures Additional  
therapy

Summary of results

Mayr et al. [10] Lokomat 16 Subacute 5 times a week for  
6 weeks, 30 minutes

EWS, RMAS, 10MWT, 6MWT, 
MI, MRC, AS

- More effective

Husemann et al. [11] Lokomat 32 Subacute 5 times a week for  
4 weeks, 30 minutes

FAC, 10MWT, MI, BI, MRC, 
Spatiotemporal Gait 
Parameters, MAS

- More effective

Hornby et al. [12] Lokomat 62 Chronic Total 12 sessions,  
30 minutes

SSFWS, 6MWT, mEFAP, BBS, 
FAI, Physical SF-36

- Less effective

Schwartz et al. [27] Lokomat 67 Subacute 3 times a week for  
6 weeks, 30 minutes

FAC, NIHSS, FIM, SAS, 
10MWT, 2MWT, TUG, 
Number of Climbed Stairs

- More effective

Hidler et al. [13] Lokomat 72 Subacute Total 24 sessions,  
60 minutes

6MWT, BBS, FAC, NIHSS, 
Motor Assessment Scale, 
RMI, FAI, SF-36

- Less effective

Westlake and  
Patten [28]

Lokomat 16 Chronic 3 times a week for  
4 weeks, 30 minutes

SSFWS, 6MWT, FMA, BBS, 
SPPB

- More effective

Chang et al. [29] Lokomat 37 Subacute 5 times a week for  
2 weeks, 40 minutes

FAC, MI, FMA, aerobic 
capacity, cardiovascular 
response, ventilatory 
response

- No difference

van Nunen et al. [30] Lokomat 30 Subacute 2 times a week for  
8 weeks, 60 minutes

10MWT, FAC, BBS, FMA, 
MI, RMI, TUG, maximal 
voluntary isometric torque

- No difference

Bang and Shin [31] Lokomat 18 Chronic 5 times a week for  
5 weeks, 60 minutes

Spatiotemporal Gait 
Parameters, BBS, ABC

- More effective

Taveggia et al. [32] Lokomat 28 Subacute 5 times a week for  
5 weeks, 30 minutes

6MWT, 10MWT, FIM, SF-36, 
TBS, TGS

- More effective 
in functional 

independence and gait 
speed, less effective in 

gait endurance
Kim et al. [33] Walkbot 30 Subacute 5 times a week for  

4 weeks, 40 minutes
FAC, BBS, MBI, MAS, 
EuroQol-5 dimension

- More effective in 
balance and gait 

function
EWS, EU-Walking Scale; RMAS, Rivermead Motor Assessment Scale; 10MWT, 10-meter walk test; 6MWT, 6-minute walk test; MI, Motricity Index; MRC, Medical 
Research Council; AS, Ashworth Scale; FAC, Functional Ambulatory Category; BI, Barthel Index; MAS, Modified Ashworth Scale; SSFWS, Self-selected and fast 
walking speed; mEFAP, modified Emory Functional Ambulation Profile; BBS, Berg Balance Scale; FAI, Frenchay Activities Index; NIHSS, National Institutes of 
Health Stroke Scale; FIM, Functional Independence Measure; SAS, Stroke Activity Scale; 2MWT, 2-minute walk test; TUG, Timed Up and Go; RMI, Rivermead 
Mobility Index; FMA, Fugl-Meyer Assessment; SPPB, short physical performance battery; ABC, activities-specific balance confidence; TBS, Tinetti Balance Scale; 
TGS, Tinetti Gait Scale; MBI, modified Barthel Index.
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affordable in current stroke rehabilitation care [19]. Furthermore, the current robot-assisted 
gait training incorporates virtual or augmented reality to motivate patients, as well as to 
provide fun and ecologically valid gait training. Since the additive effect of robot-assisted 
gait training is well established, a prospective study is warranted to determine if robot-
assisted gait training is superior to conventional stroke locomotor rehabilitation alone or 
robot-assisted gait training combined with conventional gait training. It would be of great 
interest to examine the effects of repetitive robot-assisted gait training on neuroplasticity and 
associated locomotor recovery in a stroke population.
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